mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-12 10:55:16 +00:00
e44d0ac7f7
This flag is mainly used for testing the weight offloading, it shouldn't actually be used in practice. Remove useless import.
381 lines
16 KiB
Python
381 lines
16 KiB
Python
# Based on:
|
|
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
|
|
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
|
|
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, Mlp, timestep_embedding
|
|
from comfy.ldm.modules.attention import optimized_attention
|
|
|
|
# if model_management.xformers_enabled():
|
|
# import xformers.ops
|
|
# if int((xformers.__version__).split(".")[2].split("+")[0]) >= 28:
|
|
# block_diagonal_mask_from_seqlens = xformers.ops.fmha.attn_bias.BlockDiagonalMask.from_seqlens
|
|
# else:
|
|
# block_diagonal_mask_from_seqlens = xformers.ops.fmha.BlockDiagonalMask.from_seqlens
|
|
|
|
def modulate(x, shift, scale):
|
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
|
|
|
def t2i_modulate(x, shift, scale):
|
|
return x * (1 + scale) + shift
|
|
|
|
class MultiHeadCrossAttention(nn.Module):
|
|
def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., dtype=None, device=None, operations=None, **kwargs):
|
|
super(MultiHeadCrossAttention, self).__init__()
|
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
|
|
|
self.d_model = d_model
|
|
self.num_heads = num_heads
|
|
self.head_dim = d_model // num_heads
|
|
|
|
self.q_linear = operations.Linear(d_model, d_model, dtype=dtype, device=device)
|
|
self.kv_linear = operations.Linear(d_model, d_model*2, dtype=dtype, device=device)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x, cond, mask=None):
|
|
# query/value: img tokens; key: condition; mask: if padding tokens
|
|
B, N, C = x.shape
|
|
|
|
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
|
|
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
|
|
k, v = kv.unbind(2)
|
|
|
|
assert mask is None # TODO?
|
|
# # TODO: xformers needs separate mask logic here
|
|
# if model_management.xformers_enabled():
|
|
# attn_bias = None
|
|
# if mask is not None:
|
|
# attn_bias = block_diagonal_mask_from_seqlens([N] * B, mask)
|
|
# x = xformers.ops.memory_efficient_attention(q, k, v, p=0, attn_bias=attn_bias)
|
|
# else:
|
|
# q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),)
|
|
# attn_mask = None
|
|
# mask = torch.ones(())
|
|
# if mask is not None and len(mask) > 1:
|
|
# # Create equivalent of xformer diagonal block mask, still only correct for square masks
|
|
# # But depth doesn't matter as tensors can expand in that dimension
|
|
# attn_mask_template = torch.ones(
|
|
# [q.shape[2] // B, mask[0]],
|
|
# dtype=torch.bool,
|
|
# device=q.device
|
|
# )
|
|
# attn_mask = torch.block_diag(attn_mask_template)
|
|
#
|
|
# # create a mask on the diagonal for each mask in the batch
|
|
# for _ in range(B - 1):
|
|
# attn_mask = torch.block_diag(attn_mask, attn_mask_template)
|
|
# x = optimized_attention(q, k, v, self.num_heads, mask=attn_mask, skip_reshape=True)
|
|
|
|
x = optimized_attention(q.view(B, -1, C), k.view(B, -1, C), v.view(B, -1, C), self.num_heads, mask=None)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class AttentionKVCompress(nn.Module):
|
|
"""Multi-head Attention block with KV token compression and qk norm."""
|
|
def __init__(self, dim, num_heads=8, qkv_bias=True, sampling='conv', sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **kwargs):
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads.
|
|
qkv_bias (bool: If True, add a learnable bias to query, key, value.
|
|
"""
|
|
super().__init__()
|
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim // num_heads
|
|
self.scale = self.head_dim ** -0.5
|
|
|
|
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
|
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
|
|
|
self.sampling=sampling # ['conv', 'ave', 'uniform', 'uniform_every']
|
|
self.sr_ratio = sr_ratio
|
|
if sr_ratio > 1 and sampling == 'conv':
|
|
# Avg Conv Init.
|
|
self.sr = operations.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio, dtype=dtype, device=device)
|
|
# self.sr.weight.data.fill_(1/sr_ratio**2)
|
|
# self.sr.bias.data.zero_()
|
|
self.norm = operations.LayerNorm(dim, dtype=dtype, device=device)
|
|
if qk_norm:
|
|
self.q_norm = operations.LayerNorm(dim, dtype=dtype, device=device)
|
|
self.k_norm = operations.LayerNorm(dim, dtype=dtype, device=device)
|
|
else:
|
|
self.q_norm = nn.Identity()
|
|
self.k_norm = nn.Identity()
|
|
|
|
def downsample_2d(self, tensor, H, W, scale_factor, sampling=None):
|
|
if sampling is None or scale_factor == 1:
|
|
return tensor
|
|
B, N, C = tensor.shape
|
|
|
|
if sampling == 'uniform_every':
|
|
return tensor[:, ::scale_factor], int(N // scale_factor)
|
|
|
|
tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2)
|
|
new_H, new_W = int(H / scale_factor), int(W / scale_factor)
|
|
new_N = new_H * new_W
|
|
|
|
if sampling == 'ave':
|
|
tensor = F.interpolate(
|
|
tensor, scale_factor=1 / scale_factor, mode='nearest'
|
|
).permute(0, 2, 3, 1)
|
|
elif sampling == 'uniform':
|
|
tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1)
|
|
elif sampling == 'conv':
|
|
tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1)
|
|
tensor = self.norm(tensor)
|
|
else:
|
|
raise ValueError
|
|
|
|
return tensor.reshape(B, new_N, C).contiguous(), new_N
|
|
|
|
def forward(self, x, mask=None, HW=None, block_id=None):
|
|
B, N, C = x.shape # 2 4096 1152
|
|
new_N = N
|
|
if HW is None:
|
|
H = W = int(N ** 0.5)
|
|
else:
|
|
H, W = HW
|
|
qkv = self.qkv(x).reshape(B, N, 3, C)
|
|
|
|
q, k, v = qkv.unbind(2)
|
|
q = self.q_norm(q)
|
|
k = self.k_norm(k)
|
|
|
|
# KV compression
|
|
if self.sr_ratio > 1:
|
|
k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling)
|
|
v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling)
|
|
|
|
q = q.reshape(B, N, self.num_heads, C // self.num_heads)
|
|
k = k.reshape(B, new_N, self.num_heads, C // self.num_heads)
|
|
v = v.reshape(B, new_N, self.num_heads, C // self.num_heads)
|
|
|
|
if mask is not None:
|
|
raise NotImplementedError("Attn mask logic not added for self attention")
|
|
|
|
# This is never called at the moment
|
|
# attn_bias = None
|
|
# if mask is not None:
|
|
# attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device)
|
|
# attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf'))
|
|
|
|
# attention 2
|
|
q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),)
|
|
x = optimized_attention(q, k, v, self.num_heads, mask=None, skip_reshape=True)
|
|
|
|
x = x.view(B, N, C)
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class FinalLayer(nn.Module):
|
|
"""
|
|
The final layer of PixArt.
|
|
"""
|
|
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)
|
|
)
|
|
|
|
def forward(self, x, c):
|
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
|
x = modulate(self.norm_final(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
class T2IFinalLayer(nn.Module):
|
|
"""
|
|
The final layer of PixArt.
|
|
"""
|
|
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
|
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5)
|
|
self.out_channels = out_channels
|
|
|
|
def forward(self, x, t):
|
|
shift, scale = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t[:, None]).chunk(2, dim=1)
|
|
x = t2i_modulate(self.norm_final(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class MaskFinalLayer(nn.Module):
|
|
"""
|
|
The final layer of PixArt.
|
|
"""
|
|
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device)
|
|
)
|
|
def forward(self, x, t):
|
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
|
|
x = modulate(self.norm_final(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class DecoderLayer(nn.Module):
|
|
"""
|
|
The final layer of PixArt.
|
|
"""
|
|
def __init__(self, hidden_size, decoder_hidden_size, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.norm_decoder = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
self.linear = operations.Linear(hidden_size, decoder_hidden_size, bias=True, dtype=dtype, device=device)
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)
|
|
)
|
|
def forward(self, x, t):
|
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
|
|
x = modulate(self.norm_decoder(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class SizeEmbedder(TimestepEmbedder):
|
|
"""
|
|
Embeds scalar timesteps into vector representations.
|
|
"""
|
|
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
|
|
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size, operations=operations)
|
|
self.mlp = nn.Sequential(
|
|
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device),
|
|
nn.SiLU(),
|
|
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
|
|
)
|
|
self.frequency_embedding_size = frequency_embedding_size
|
|
self.outdim = hidden_size
|
|
|
|
def forward(self, s, bs):
|
|
if s.ndim == 1:
|
|
s = s[:, None]
|
|
assert s.ndim == 2
|
|
if s.shape[0] != bs:
|
|
s = s.repeat(bs//s.shape[0], 1)
|
|
assert s.shape[0] == bs
|
|
b, dims = s.shape[0], s.shape[1]
|
|
s = rearrange(s, "b d -> (b d)")
|
|
s_freq = timestep_embedding(s, self.frequency_embedding_size)
|
|
s_emb = self.mlp(s_freq.to(s.dtype))
|
|
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
|
|
return s_emb
|
|
|
|
|
|
class LabelEmbedder(nn.Module):
|
|
"""
|
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
|
"""
|
|
def __init__(self, num_classes, hidden_size, dropout_prob, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
use_cfg_embedding = dropout_prob > 0
|
|
self.embedding_table = operations.Embedding(num_classes + use_cfg_embedding, hidden_size, dtype=dtype, device=device),
|
|
self.num_classes = num_classes
|
|
self.dropout_prob = dropout_prob
|
|
|
|
def token_drop(self, labels, force_drop_ids=None):
|
|
"""
|
|
Drops labels to enable classifier-free guidance.
|
|
"""
|
|
if force_drop_ids is None:
|
|
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob
|
|
else:
|
|
drop_ids = force_drop_ids == 1
|
|
labels = torch.where(drop_ids, self.num_classes, labels)
|
|
return labels
|
|
|
|
def forward(self, labels, train, force_drop_ids=None):
|
|
use_dropout = self.dropout_prob > 0
|
|
if (train and use_dropout) or (force_drop_ids is not None):
|
|
labels = self.token_drop(labels, force_drop_ids)
|
|
embeddings = self.embedding_table(labels)
|
|
return embeddings
|
|
|
|
|
|
class CaptionEmbedder(nn.Module):
|
|
"""
|
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
|
"""
|
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.y_proj = Mlp(
|
|
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer,
|
|
dtype=dtype, device=device, operations=operations,
|
|
)
|
|
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
|
|
self.uncond_prob = uncond_prob
|
|
|
|
def token_drop(self, caption, force_drop_ids=None):
|
|
"""
|
|
Drops labels to enable classifier-free guidance.
|
|
"""
|
|
if force_drop_ids is None:
|
|
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
|
|
else:
|
|
drop_ids = force_drop_ids == 1
|
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
|
|
return caption
|
|
|
|
def forward(self, caption, train, force_drop_ids=None):
|
|
if train:
|
|
assert caption.shape[2:] == self.y_embedding.shape
|
|
use_dropout = self.uncond_prob > 0
|
|
if (train and use_dropout) or (force_drop_ids is not None):
|
|
caption = self.token_drop(caption, force_drop_ids)
|
|
caption = self.y_proj(caption)
|
|
return caption
|
|
|
|
|
|
class CaptionEmbedderDoubleBr(nn.Module):
|
|
"""
|
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
|
"""
|
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.proj = Mlp(
|
|
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer,
|
|
dtype=dtype, device=device, operations=operations,
|
|
)
|
|
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5)
|
|
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5)
|
|
self.uncond_prob = uncond_prob
|
|
|
|
def token_drop(self, global_caption, caption, force_drop_ids=None):
|
|
"""
|
|
Drops labels to enable classifier-free guidance.
|
|
"""
|
|
if force_drop_ids is None:
|
|
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob
|
|
else:
|
|
drop_ids = force_drop_ids == 1
|
|
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption)
|
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
|
|
return global_caption, caption
|
|
|
|
def forward(self, caption, train, force_drop_ids=None):
|
|
assert caption.shape[2: ] == self.y_embedding.shape
|
|
global_caption = caption.mean(dim=2).squeeze()
|
|
use_dropout = self.uncond_prob > 0
|
|
if (train and use_dropout) or (force_drop_ids is not None):
|
|
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids)
|
|
y_embed = self.proj(global_caption)
|
|
return y_embed, caption
|