# Based on: # https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license] # https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license] import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, Mlp, timestep_embedding from comfy.ldm.modules.attention import optimized_attention # if model_management.xformers_enabled(): # import xformers.ops # if int((xformers.__version__).split(".")[2].split("+")[0]) >= 28: # block_diagonal_mask_from_seqlens = xformers.ops.fmha.attn_bias.BlockDiagonalMask.from_seqlens # else: # block_diagonal_mask_from_seqlens = xformers.ops.fmha.BlockDiagonalMask.from_seqlens def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) def t2i_modulate(x, shift, scale): return x * (1 + scale) + shift class MultiHeadCrossAttention(nn.Module): def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., dtype=None, device=None, operations=None, **kwargs): super(MultiHeadCrossAttention, self).__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_model = d_model self.num_heads = num_heads self.head_dim = d_model // num_heads self.q_linear = operations.Linear(d_model, d_model, dtype=dtype, device=device) self.kv_linear = operations.Linear(d_model, d_model*2, dtype=dtype, device=device) self.attn_drop = nn.Dropout(attn_drop) self.proj = operations.Linear(d_model, d_model, dtype=dtype, device=device) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, cond, mask=None): # query/value: img tokens; key: condition; mask: if padding tokens B, N, C = x.shape q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) k, v = kv.unbind(2) assert mask is None # TODO? # # TODO: xformers needs separate mask logic here # if model_management.xformers_enabled(): # attn_bias = None # if mask is not None: # attn_bias = block_diagonal_mask_from_seqlens([N] * B, mask) # x = xformers.ops.memory_efficient_attention(q, k, v, p=0, attn_bias=attn_bias) # else: # q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),) # attn_mask = None # mask = torch.ones(()) # if mask is not None and len(mask) > 1: # # Create equivalent of xformer diagonal block mask, still only correct for square masks # # But depth doesn't matter as tensors can expand in that dimension # attn_mask_template = torch.ones( # [q.shape[2] // B, mask[0]], # dtype=torch.bool, # device=q.device # ) # attn_mask = torch.block_diag(attn_mask_template) # # # create a mask on the diagonal for each mask in the batch # for _ in range(B - 1): # attn_mask = torch.block_diag(attn_mask, attn_mask_template) # x = optimized_attention(q, k, v, self.num_heads, mask=attn_mask, skip_reshape=True) x = optimized_attention(q.view(B, -1, C), k.view(B, -1, C), v.view(B, -1, C), self.num_heads, mask=None) x = self.proj(x) x = self.proj_drop(x) return x class AttentionKVCompress(nn.Module): """Multi-head Attention block with KV token compression and qk norm.""" def __init__(self, dim, num_heads=8, qkv_bias=True, sampling='conv', sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **kwargs): """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. qkv_bias (bool: If True, add a learnable bias to query, key, value. """ super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) self.sampling=sampling # ['conv', 'ave', 'uniform', 'uniform_every'] self.sr_ratio = sr_ratio if sr_ratio > 1 and sampling == 'conv': # Avg Conv Init. self.sr = operations.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio, dtype=dtype, device=device) # self.sr.weight.data.fill_(1/sr_ratio**2) # self.sr.bias.data.zero_() self.norm = operations.LayerNorm(dim, dtype=dtype, device=device) if qk_norm: self.q_norm = operations.LayerNorm(dim, dtype=dtype, device=device) self.k_norm = operations.LayerNorm(dim, dtype=dtype, device=device) else: self.q_norm = nn.Identity() self.k_norm = nn.Identity() def downsample_2d(self, tensor, H, W, scale_factor, sampling=None): if sampling is None or scale_factor == 1: return tensor B, N, C = tensor.shape if sampling == 'uniform_every': return tensor[:, ::scale_factor], int(N // scale_factor) tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2) new_H, new_W = int(H / scale_factor), int(W / scale_factor) new_N = new_H * new_W if sampling == 'ave': tensor = F.interpolate( tensor, scale_factor=1 / scale_factor, mode='nearest' ).permute(0, 2, 3, 1) elif sampling == 'uniform': tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1) elif sampling == 'conv': tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1) tensor = self.norm(tensor) else: raise ValueError return tensor.reshape(B, new_N, C).contiguous(), new_N def forward(self, x, mask=None, HW=None, block_id=None): B, N, C = x.shape # 2 4096 1152 new_N = N if HW is None: H = W = int(N ** 0.5) else: H, W = HW qkv = self.qkv(x).reshape(B, N, 3, C) q, k, v = qkv.unbind(2) q = self.q_norm(q) k = self.k_norm(k) # KV compression if self.sr_ratio > 1: k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling) v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling) q = q.reshape(B, N, self.num_heads, C // self.num_heads) k = k.reshape(B, new_N, self.num_heads, C // self.num_heads) v = v.reshape(B, new_N, self.num_heads, C // self.num_heads) if mask is not None: raise NotImplementedError("Attn mask logic not added for self attention") # This is never called at the moment # attn_bias = None # if mask is not None: # attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device) # attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf')) # attention 2 q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),) x = optimized_attention(q, k, v, self.num_heads, mask=None, skip_reshape=True) x = x.view(B, N, C) x = self.proj(x) return x class FinalLayer(nn.Module): """ The final layer of PixArt. """ def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None): super().__init__() self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class T2IFinalLayer(nn.Module): """ The final layer of PixArt. """ def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None): super().__init__() self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5) self.out_channels = out_channels def forward(self, x, t): shift, scale = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t[:, None]).chunk(2, dim=1) x = t2i_modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class MaskFinalLayer(nn.Module): """ The final layer of PixArt. """ def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None): super().__init__() self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device) ) def forward(self, x, t): shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class DecoderLayer(nn.Module): """ The final layer of PixArt. """ def __init__(self, hidden_size, decoder_hidden_size, dtype=None, device=None, operations=None): super().__init__() self.norm_decoder = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.linear = operations.Linear(hidden_size, decoder_hidden_size, bias=True, dtype=dtype, device=device) self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) ) def forward(self, x, t): shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) x = modulate(self.norm_decoder(x), shift, scale) x = self.linear(x) return x class SizeEmbedder(TimestepEmbedder): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size, operations=operations) self.mlp = nn.Sequential( operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), nn.SiLU(), operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), ) self.frequency_embedding_size = frequency_embedding_size self.outdim = hidden_size def forward(self, s, bs): if s.ndim == 1: s = s[:, None] assert s.ndim == 2 if s.shape[0] != bs: s = s.repeat(bs//s.shape[0], 1) assert s.shape[0] == bs b, dims = s.shape[0], s.shape[1] s = rearrange(s, "b d -> (b d)") s_freq = timestep_embedding(s, self.frequency_embedding_size) s_emb = self.mlp(s_freq.to(s.dtype)) s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) return s_emb class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob, dtype=None, device=None, operations=None): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = operations.Embedding(num_classes + use_cfg_embedding, hidden_size, dtype=dtype, device=device), self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings class CaptionEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None): super().__init__() self.y_proj = Mlp( in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, dtype=dtype, device=device, operations=operations, ) self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5)) self.uncond_prob = uncond_prob def token_drop(self, caption, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob else: drop_ids = force_drop_ids == 1 caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) return caption def forward(self, caption, train, force_drop_ids=None): if train: assert caption.shape[2:] == self.y_embedding.shape use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): caption = self.token_drop(caption, force_drop_ids) caption = self.y_proj(caption) return caption class CaptionEmbedderDoubleBr(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None): super().__init__() self.proj = Mlp( in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, dtype=dtype, device=device, operations=operations, ) self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5) self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5) self.uncond_prob = uncond_prob def token_drop(self, global_caption, caption, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob else: drop_ids = force_drop_ids == 1 global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption) caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) return global_caption, caption def forward(self, caption, train, force_drop_ids=None): assert caption.shape[2: ] == self.y_embedding.shape global_caption = caption.mean(dim=2).squeeze() use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids) y_embed = self.proj(global_caption) return y_embed, caption