Compare commits

...

17 Commits

Author SHA1 Message Date
RandomGitUser321
a2ecf18406
Merge 7c595586dd into 22ad513c72 2025-04-11 11:52:08 -04:00
comfyanonymous
22ad513c72 Refactor node cache code to more easily add other types of cache. 2025-04-11 07:16:52 -04:00
Chargeuk
ed945a1790
Dependency Aware Node Caching for low RAM/VRAM machines (#7509)
* add dependency aware cache that removed a cached node as soon as all of its decendents have executed. This allows users with lower RAM to run workflows they would otherwise not be able to run. The downside is that every workflow will fully run each time even if no nodes have changed.

* remove test code

* tidy code
2025-04-11 06:55:51 -04:00
Chenlei Hu
f9207c6936
Update frontend to 1.15 (#7564) 2025-04-11 06:46:20 -04:00
Christian Byrne
8ad7477647
dont cache templates index (#7569) 2025-04-11 06:06:53 -04:00
Chenlei Hu
98bdca4cb2
Deprecate InputTypeOptions.defaultInput (#7551)
* Deprecate InputTypeOptions.defaultInput

* nit

* nit
2025-04-10 06:57:06 -04:00
comfyanonymous
a26da20a76 Fix custom nodes not importing when path contains a dot. 2025-04-10 03:37:52 -04:00
Jedrzej Kosinski
e346d8584e
Add prepare_sampling wrapper allowing custom nodes to more accurately report noise_shape (#7500) 2025-04-09 09:43:35 -04:00
comfyanonymous
ab31b64412 Make "surface net" the default in the VoxelToMesh node. 2025-04-09 09:42:08 -04:00
thot experiment
fe29739c68
add VoxelToMesh node w/ surfacenet meshing (#7446)
* add VoxelToMesh node w/ surfacenet meshing

could delete the VoxelToMeshBasic node now probably?

* fix ruff
2025-04-09 09:41:03 -04:00
Chenlei Hu
e8345a9b7b
Align /prompt response schema (#7423) 2025-04-09 09:10:36 -04:00
comfyanonymous
8c6b9f4481
Prevent custom nodes from accidentally overwriting global modules. (#7167)
* Prevent custom nodes from accidentally overwriting global modules.

* Improve.
2025-04-09 09:08:57 -04:00
Christian Byrne
cc7e023a4a
handle palette mode in loadimage node (#7539) 2025-04-09 09:07:07 -04:00
comfyanonymous
2f7d8159c3 Show the user an error when the controlnet file is invalid. 2025-04-08 08:11:59 -04:00
RandomGitUser321
7c595586dd
grammar 2024-09-22 08:28:11 -04:00
RandomGitUser321
80cd3fb13c
directions on launching 2024-09-22 08:05:12 -04:00
RandomGitUser321
826ad087a0
gradio websocket app example 2024-09-22 07:40:08 -04:00
12 changed files with 764 additions and 30 deletions

View File

@ -101,6 +101,7 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
cache_group = parser.add_mutually_exclusive_group() cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.") cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.") cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
attn_group = parser.add_mutually_exclusive_group() attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.") attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")

View File

@ -102,9 +102,13 @@ class InputTypeOptions(TypedDict):
default: bool | str | float | int | list | tuple default: bool | str | float | int | list | tuple
"""The default value of the widget""" """The default value of the widget"""
defaultInput: bool defaultInput: bool
"""Defaults to an input slot rather than a widget""" """@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
- defaultInput on required inputs should be dropped.
- defaultInput on optional inputs should be replaced with forceInput.
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
"""
forceInput: bool forceInput: bool
"""`defaultInput` and also don't allow converting to a widget""" """Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
lazy: bool lazy: bool
"""Declares that this input uses lazy evaluation""" """Declares that this input uses lazy evaluation"""
rawLink: bool rawLink: bool

View File

@ -48,6 +48,7 @@ def get_all_callbacks(call_type: str, transformer_options: dict, is_model_option
class WrappersMP: class WrappersMP:
OUTER_SAMPLE = "outer_sample" OUTER_SAMPLE = "outer_sample"
PREPARE_SAMPLING = "prepare_sampling"
SAMPLER_SAMPLE = "sampler_sample" SAMPLER_SAMPLE = "sampler_sample"
CALC_COND_BATCH = "calc_cond_batch" CALC_COND_BATCH = "calc_cond_batch"
APPLY_MODEL = "apply_model" APPLY_MODEL = "apply_model"

View File

@ -106,6 +106,13 @@ def cleanup_additional_models(models):
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None): def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
real_model: BaseModel = None real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype()) models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options) models += get_additional_models_from_model_options(model_options)

View File

@ -316,3 +316,156 @@ class LRUCache(BasicCache):
self.children[cache_key].append(self.cache_key_set.get_data_key(child_id)) self.children[cache_key].append(self.cache_key_set.get_data_key(child_id))
return self return self
class DependencyAwareCache(BasicCache):
"""
A cache implementation that tracks dependencies between nodes and manages
their execution and caching accordingly. It extends the BasicCache class.
Nodes are removed from this cache once all of their descendants have been
executed.
"""
def __init__(self, key_class):
"""
Initialize the DependencyAwareCache.
Args:
key_class: The class used for generating cache keys.
"""
super().__init__(key_class)
self.descendants = {} # Maps node_id -> set of descendant node_ids
self.ancestors = {} # Maps node_id -> set of ancestor node_ids
self.executed_nodes = set() # Tracks nodes that have been executed
def set_prompt(self, dynprompt, node_ids, is_changed_cache):
"""
Clear the entire cache and rebuild the dependency graph.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to initialize the cache for.
is_changed_cache: Flag indicating if the cache has changed.
"""
# Clear all existing cache data
self.cache.clear()
self.subcaches.clear()
self.descendants.clear()
self.ancestors.clear()
self.executed_nodes.clear()
# Call the parent method to initialize the cache with the new prompt
super().set_prompt(dynprompt, node_ids, is_changed_cache)
# Rebuild the dependency graph
self._build_dependency_graph(dynprompt, node_ids)
def _build_dependency_graph(self, dynprompt, node_ids):
"""
Build the dependency graph for all nodes.
Args:
dynprompt: The dynamic prompt object containing node information.
node_ids: List of node IDs to build the graph for.
"""
self.descendants.clear()
self.ancestors.clear()
for node_id in node_ids:
self.descendants[node_id] = set()
self.ancestors[node_id] = set()
for node_id in node_ids:
inputs = dynprompt.get_node(node_id)["inputs"]
for input_data in inputs.values():
if is_link(input_data): # Check if the input is a link to another node
ancestor_id = input_data[0]
self.descendants[ancestor_id].add(node_id)
self.ancestors[node_id].add(ancestor_id)
def set(self, node_id, value):
"""
Mark a node as executed and store its value in the cache.
Args:
node_id: The ID of the node to store.
value: The value to store for the node.
"""
self._set_immediate(node_id, value)
self.executed_nodes.add(node_id)
self._cleanup_ancestors(node_id)
def get(self, node_id):
"""
Retrieve the cached value for a node.
Args:
node_id: The ID of the node to retrieve.
Returns:
The cached value for the node.
"""
return self._get_immediate(node_id)
def ensure_subcache_for(self, node_id, children_ids):
"""
Ensure a subcache exists for a node and update dependencies.
Args:
node_id: The ID of the parent node.
children_ids: List of child node IDs to associate with the parent node.
Returns:
The subcache object for the node.
"""
subcache = super()._ensure_subcache(node_id, children_ids)
for child_id in children_ids:
self.descendants[node_id].add(child_id)
self.ancestors[child_id].add(node_id)
return subcache
def _cleanup_ancestors(self, node_id):
"""
Check if ancestors of a node can be removed from the cache.
Args:
node_id: The ID of the node whose ancestors are to be checked.
"""
for ancestor_id in self.ancestors.get(node_id, []):
if ancestor_id in self.executed_nodes:
# Remove ancestor if all its descendants have been executed
if all(descendant in self.executed_nodes for descendant in self.descendants[ancestor_id]):
self._remove_node(ancestor_id)
def _remove_node(self, node_id):
"""
Remove a node from the cache.
Args:
node_id: The ID of the node to remove.
"""
cache_key = self.cache_key_set.get_data_key(node_id)
if cache_key in self.cache:
del self.cache[cache_key]
subcache_key = self.cache_key_set.get_subcache_key(node_id)
if subcache_key in self.subcaches:
del self.subcaches[subcache_key]
def clean_unused(self):
"""
Clean up unused nodes. This is a no-op for this cache implementation.
"""
pass
def recursive_debug_dump(self):
"""
Dump the cache and dependency graph for debugging.
Returns:
A list containing the cache state and dependency graph.
"""
result = super().recursive_debug_dump()
result.append({
"descendants": self.descendants,
"ancestors": self.ancestors,
"executed_nodes": list(self.executed_nodes),
})
return result

View File

@ -209,6 +209,196 @@ def voxel_to_mesh(voxels, threshold=0.5, device=None):
vertices = torch.fliplr(vertices) vertices = torch.fliplr(vertices)
return vertices, faces return vertices, faces
def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None):
if device is None:
device = torch.device("cpu")
voxels = voxels.to(device)
D, H, W = voxels.shape
padded = torch.nn.functional.pad(voxels, (1, 1, 1, 1, 1, 1), 'constant', 0)
z, y, x = torch.meshgrid(
torch.arange(D, device=device),
torch.arange(H, device=device),
torch.arange(W, device=device),
indexing='ij'
)
cell_positions = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)
corner_offsets = torch.tensor([
[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]
], device=device)
corner_values = torch.zeros((cell_positions.shape[0], 8), device=device)
for c, (dz, dy, dx) in enumerate(corner_offsets):
corner_values[:, c] = padded[
cell_positions[:, 0] + dz,
cell_positions[:, 1] + dy,
cell_positions[:, 2] + dx
]
corner_signs = corner_values > threshold
has_inside = torch.any(corner_signs, dim=1)
has_outside = torch.any(~corner_signs, dim=1)
contains_surface = has_inside & has_outside
active_cells = cell_positions[contains_surface]
active_signs = corner_signs[contains_surface]
active_values = corner_values[contains_surface]
if active_cells.shape[0] == 0:
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
edges = torch.tensor([
[0, 1], [0, 2], [0, 4], [1, 3],
[1, 5], [2, 3], [2, 6], [3, 7],
[4, 5], [4, 6], [5, 7], [6, 7]
], device=device)
cell_vertices = {}
progress = comfy.utils.ProgressBar(100)
for edge_idx, (e1, e2) in enumerate(edges):
progress.update(1)
crossing = active_signs[:, e1] != active_signs[:, e2]
if not crossing.any():
continue
cell_indices = torch.nonzero(crossing, as_tuple=True)[0]
v1 = active_values[cell_indices, e1]
v2 = active_values[cell_indices, e2]
t = torch.zeros_like(v1, device=device)
denom = v2 - v1
valid = denom != 0
t[valid] = (threshold - v1[valid]) / denom[valid]
t[~valid] = 0.5
p1 = corner_offsets[e1].float()
p2 = corner_offsets[e2].float()
intersection = p1.unsqueeze(0) + t.unsqueeze(1) * (p2.unsqueeze(0) - p1.unsqueeze(0))
for i, point in zip(cell_indices.tolist(), intersection):
if i not in cell_vertices:
cell_vertices[i] = []
cell_vertices[i].append(point)
# Calculate the final vertices as the average of intersection points for each cell
vertices = []
vertex_lookup = {}
vert_progress_mod = round(len(cell_vertices)/50)
for i, points in cell_vertices.items():
if not i % vert_progress_mod:
progress.update(1)
if points:
vertex = torch.stack(points).mean(dim=0)
vertex = vertex + active_cells[i].float()
vertex_lookup[tuple(active_cells[i].tolist())] = len(vertices)
vertices.append(vertex)
if not vertices:
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
final_vertices = torch.stack(vertices)
inside_corners_mask = active_signs
outside_corners_mask = ~active_signs
inside_counts = inside_corners_mask.sum(dim=1, keepdim=True).float()
outside_counts = outside_corners_mask.sum(dim=1, keepdim=True).float()
inside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
outside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
for i in range(8):
mask_inside = inside_corners_mask[:, i].unsqueeze(1)
mask_outside = outside_corners_mask[:, i].unsqueeze(1)
inside_pos += corner_offsets[i].float().unsqueeze(0) * mask_inside
outside_pos += corner_offsets[i].float().unsqueeze(0) * mask_outside
inside_pos /= inside_counts
outside_pos /= outside_counts
gradients = inside_pos - outside_pos
pos_dirs = torch.tensor([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
], device=device)
cross_products = [
torch.linalg.cross(pos_dirs[i].float(), pos_dirs[j].float())
for i in range(3) for j in range(i+1, 3)
]
faces = []
all_keys = set(vertex_lookup.keys())
face_progress_mod = round(len(active_cells)/38*3)
for pair_idx, (i, j) in enumerate([(0,1), (0,2), (1,2)]):
dir_i = pos_dirs[i]
dir_j = pos_dirs[j]
cross_product = cross_products[pair_idx]
ni_positions = active_cells + dir_i
nj_positions = active_cells + dir_j
diag_positions = active_cells + dir_i + dir_j
alignments = torch.matmul(gradients, cross_product)
valid_quads = []
quad_indices = []
for idx, active_cell in enumerate(active_cells):
if not idx % face_progress_mod:
progress.update(1)
cell_key = tuple(active_cell.tolist())
ni_key = tuple(ni_positions[idx].tolist())
nj_key = tuple(nj_positions[idx].tolist())
diag_key = tuple(diag_positions[idx].tolist())
if cell_key in all_keys and ni_key in all_keys and nj_key in all_keys and diag_key in all_keys:
v0 = vertex_lookup[cell_key]
v1 = vertex_lookup[ni_key]
v2 = vertex_lookup[nj_key]
v3 = vertex_lookup[diag_key]
valid_quads.append((v0, v1, v2, v3))
quad_indices.append(idx)
for q_idx, (v0, v1, v2, v3) in enumerate(valid_quads):
cell_idx = quad_indices[q_idx]
if alignments[cell_idx] > 0:
faces.append(torch.tensor([v0, v1, v3], device=device, dtype=torch.long))
faces.append(torch.tensor([v0, v3, v2], device=device, dtype=torch.long))
else:
faces.append(torch.tensor([v0, v3, v1], device=device, dtype=torch.long))
faces.append(torch.tensor([v0, v2, v3], device=device, dtype=torch.long))
if faces:
faces = torch.stack(faces)
else:
faces = torch.zeros((0, 3), dtype=torch.long, device=device)
v_min = 0
v_max = max(D, H, W)
final_vertices = final_vertices - (v_min + v_max) / 2
scale = (v_max - v_min) / 2
if scale > 0:
final_vertices = final_vertices / scale
final_vertices = torch.fliplr(final_vertices)
return final_vertices, faces
class MESH: class MESH:
def __init__(self, vertices, faces): def __init__(self, vertices, faces):
@ -237,6 +427,34 @@ class VoxelToMeshBasic:
return (MESH(torch.stack(vertices), torch.stack(faces)), ) return (MESH(torch.stack(vertices), torch.stack(faces)), )
class VoxelToMesh:
@classmethod
def INPUT_TYPES(s):
return {"required": {"voxel": ("VOXEL", ),
"algorithm": (["surface net", "basic"], ),
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MESH",)
FUNCTION = "decode"
CATEGORY = "3d"
def decode(self, voxel, algorithm, threshold):
vertices = []
faces = []
if algorithm == "basic":
mesh_function = voxel_to_mesh
elif algorithm == "surface net":
mesh_function = voxel_to_mesh_surfnet
for x in voxel.data:
v, f = mesh_function(x, threshold=threshold, device=None)
vertices.append(v)
faces.append(f)
return (MESH(torch.stack(vertices), torch.stack(faces)), )
def save_glb(vertices, faces, filepath, metadata=None): def save_glb(vertices, faces, filepath, metadata=None):
""" """
@ -411,5 +629,6 @@ NODE_CLASS_MAPPINGS = {
"Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView, "Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView,
"VAEDecodeHunyuan3D": VAEDecodeHunyuan3D, "VAEDecodeHunyuan3D": VAEDecodeHunyuan3D,
"VoxelToMeshBasic": VoxelToMeshBasic, "VoxelToMeshBasic": VoxelToMeshBasic,
"VoxelToMesh": VoxelToMesh,
"SaveGLB": SaveGLB, "SaveGLB": SaveGLB,
} }

View File

@ -15,7 +15,7 @@ import nodes
import comfy.model_management import comfy.model_management
from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
from comfy_execution.graph_utils import is_link, GraphBuilder from comfy_execution.graph_utils import is_link, GraphBuilder
from comfy_execution.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID from comfy_execution.caching import HierarchicalCache, LRUCache, DependencyAwareCache, CacheKeySetInputSignature, CacheKeySetID
from comfy_execution.validation import validate_node_input from comfy_execution.validation import validate_node_input
class ExecutionResult(Enum): class ExecutionResult(Enum):
@ -59,20 +59,27 @@ class IsChangedCache:
self.is_changed[node_id] = node["is_changed"] self.is_changed[node_id] = node["is_changed"]
return self.is_changed[node_id] return self.is_changed[node_id]
class CacheSet:
def __init__(self, lru_size=None):
if lru_size is None or lru_size == 0:
self.init_classic_cache()
else:
self.init_lru_cache(lru_size)
self.all = [self.outputs, self.ui, self.objects]
# Useful for those with ample RAM/VRAM -- allows experimenting without class CacheType(Enum):
# blowing away the cache every time CLASSIC = 0
def init_lru_cache(self, cache_size): LRU = 1
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size) DEPENDENCY_AWARE = 2
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
class CacheSet:
def __init__(self, cache_type=None, cache_size=None):
if cache_type == CacheType.DEPENDENCY_AWARE:
self.init_dependency_aware_cache()
logging.info("Disabling intermediate node cache.")
elif cache_type == CacheType.LRU:
if cache_size is None:
cache_size = 0
self.init_lru_cache(cache_size)
logging.info("Using LRU cache")
else:
self.init_classic_cache()
self.all = [self.outputs, self.ui, self.objects]
# Performs like the old cache -- dump data ASAP # Performs like the old cache -- dump data ASAP
def init_classic_cache(self): def init_classic_cache(self):
@ -80,6 +87,17 @@ class CacheSet:
self.ui = HierarchicalCache(CacheKeySetInputSignature) self.ui = HierarchicalCache(CacheKeySetInputSignature)
self.objects = HierarchicalCache(CacheKeySetID) self.objects = HierarchicalCache(CacheKeySetID)
def init_lru_cache(self, cache_size):
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
# only hold cached items while the decendents have not executed
def init_dependency_aware_cache(self):
self.outputs = DependencyAwareCache(CacheKeySetInputSignature)
self.ui = DependencyAwareCache(CacheKeySetInputSignature)
self.objects = DependencyAwareCache(CacheKeySetID)
def recursive_debug_dump(self): def recursive_debug_dump(self):
result = { result = {
"outputs": self.outputs.recursive_debug_dump(), "outputs": self.outputs.recursive_debug_dump(),
@ -414,13 +432,14 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
return (ExecutionResult.SUCCESS, None, None) return (ExecutionResult.SUCCESS, None, None)
class PromptExecutor: class PromptExecutor:
def __init__(self, server, lru_size=None): def __init__(self, server, cache_type=False, cache_size=None):
self.lru_size = lru_size self.cache_size = cache_size
self.cache_type = cache_type
self.server = server self.server = server
self.reset() self.reset()
def reset(self): def reset(self):
self.caches = CacheSet(self.lru_size) self.caches = CacheSet(cache_type=self.cache_type, cache_size=self.cache_size)
self.status_messages = [] self.status_messages = []
self.success = True self.success = True
@ -775,7 +794,7 @@ def validate_prompt(prompt):
"details": f"Node ID '#{x}'", "details": f"Node ID '#{x}'",
"extra_info": {} "extra_info": {}
} }
return (False, error, [], []) return (False, error, [], {})
class_type = prompt[x]['class_type'] class_type = prompt[x]['class_type']
class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None) class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None)
@ -786,7 +805,7 @@ def validate_prompt(prompt):
"details": f"Node ID '#{x}'", "details": f"Node ID '#{x}'",
"extra_info": {} "extra_info": {}
} }
return (False, error, [], []) return (False, error, [], {})
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True: if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True:
outputs.add(x) outputs.add(x)
@ -798,7 +817,7 @@ def validate_prompt(prompt):
"details": "", "details": "",
"extra_info": {} "extra_info": {}
} }
return (False, error, [], []) return (False, error, [], {})
good_outputs = set() good_outputs = set()
errors = [] errors = []

View File

@ -156,7 +156,13 @@ def cuda_malloc_warning():
def prompt_worker(q, server_instance): def prompt_worker(q, server_instance):
current_time: float = 0.0 current_time: float = 0.0
e = execution.PromptExecutor(server_instance, lru_size=args.cache_lru) cache_type = execution.CacheType.CLASSIC
if args.cache_lru > 0:
cache_type = execution.CacheType.LRU
elif args.cache_none:
cache_type = execution.CacheType.DEPENDENCY_AWARE
e = execution.PromptExecutor(server_instance, cache_type=cache_type, cache_size=args.cache_lru)
last_gc_collect = 0 last_gc_collect = 0
need_gc = False need_gc = False
gc_collect_interval = 10.0 gc_collect_interval = 10.0

View File

@ -786,6 +786,8 @@ class ControlNetLoader:
def load_controlnet(self, control_net_name): def load_controlnet(self, control_net_name):
controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name) controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
controlnet = comfy.controlnet.load_controlnet(controlnet_path) controlnet = comfy.controlnet.load_controlnet(controlnet_path)
if controlnet is None:
raise RuntimeError("ERROR: controlnet file is invalid and does not contain a valid controlnet model.")
return (controlnet,) return (controlnet,)
class DiffControlNetLoader: class DiffControlNetLoader:
@ -1690,6 +1692,9 @@ class LoadImage:
if 'A' in i.getbands(): if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask) mask = 1. - torch.from_numpy(mask)
elif i.mode == 'P' and 'transparency' in i.info:
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else: else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image) output_images.append(image)
@ -2125,21 +2130,25 @@ def get_module_name(module_path: str) -> str:
def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes") -> bool: def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes") -> bool:
module_name = os.path.basename(module_path) module_name = get_module_name(module_path)
if os.path.isfile(module_path): if os.path.isfile(module_path):
sp = os.path.splitext(module_path) sp = os.path.splitext(module_path)
module_name = sp[0] module_name = sp[0]
sys_module_name = module_name
elif os.path.isdir(module_path):
sys_module_name = module_path.replace(".", "_x_")
try: try:
logging.debug("Trying to load custom node {}".format(module_path)) logging.debug("Trying to load custom node {}".format(module_path))
if os.path.isfile(module_path): if os.path.isfile(module_path):
module_spec = importlib.util.spec_from_file_location(module_name, module_path) module_spec = importlib.util.spec_from_file_location(sys_module_name, module_path)
module_dir = os.path.split(module_path)[0] module_dir = os.path.split(module_path)[0]
else: else:
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py")) module_spec = importlib.util.spec_from_file_location(sys_module_name, os.path.join(module_path, "__init__.py"))
module_dir = module_path module_dir = module_path
module = importlib.util.module_from_spec(module_spec) module = importlib.util.module_from_spec(module_spec)
sys.modules[module_name] = module sys.modules[sys_module_name] = module
module_spec.loader.exec_module(module) module_spec.loader.exec_module(module)
LOADED_MODULE_DIRS[module_name] = os.path.abspath(module_dir) LOADED_MODULE_DIRS[module_name] = os.path.abspath(module_dir)

View File

@ -1,4 +1,4 @@
comfyui-frontend-package==1.14.6 comfyui-frontend-package==1.15.13
torch torch
torchsde torchsde
torchvision torchvision

View File

@ -0,0 +1,309 @@
# This is a Gradio example demonstrating using the websocket api and that also decodes preview images
# Gradio has a lot of idiosyncrasies and I'm definitely not an expert at coding for it
# I'm sure there are a million and one better ways to code this, but this works pretty well and should get you started
# I suggest taking the time to check any relevant comments throughout the code
# For more info on working with Gradio: https://www.gradio.app/docs
# Ensure that ComfyUI has latent previews enabled
# If you use Comfy Manager, make sure to set the preview type there because it will override --preview-method auto/latent2rgb/taesd launch flag settings
# Check or change the preview_method in "/custom_nodes/ComfyUI-Manager/config.ini"
# If you chose to install Gradio to your ComfyUI python venv, open a command prompt in this script_examples directory and run:
# ..\..\python_embeded\python.exe -s ..\script_examples\gradio_websockets_api_example.py
# To launch the app
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import json
import urllib.request
import urllib.parse
from PIL import Image
import io
from io import BytesIO
import random
#If you want to use your local ComfyUI python installation, you'll need to navigate to your comfyui/python_embeded folder, open a cmd prompt and run "python.exe -m pip install gradio"
import gradio as gr
# adjust to your ComfyUI API settings
server_address = "127.0.0.1:8188"
client_id = str(uuid.uuid4())
#some globals to store previews, active state and progress
preview_image = None
active = False
interrupted = False
step_current = None
step_total = None
def interrupt_diffusion():
global interrupted, step_current, step_total
interrupted = True
step_current = None
step_total = None
req = urllib.request.Request("http://{}/interrupt".format(server_address), method='POST')
return urllib.request.urlopen(req)
def queue_prompt(prompt):
p = {"prompt": prompt, "client_id": client_id}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(filename, subfolder, folder_type):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
return response.read()
def get_history(prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
return json.loads(response.read())
def get_images(ws, prompt):
global preview_image, active, step_current, step_total
prompt_id = queue_prompt(prompt)['prompt_id']
output_images = {}
while True:
out = ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['node'] is None and data['prompt_id'] == prompt_id:
preview_image = None #clear these globals on completion just in case
step_current = None
step_total = None
active = False
break #Execution is done
elif message['type'] == 'progress':
data = message['data']
step_current = data['value']
step_total = data['max']
else:
bytesIO = BytesIO(out[8:])
preview_image = Image.open(bytesIO) # This is your preview in PIL image format
history = get_history(prompt_id)[prompt_id]
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
images_output = []
if 'images' in node_output:
for image in node_output['images']:
image_data = get_image(image['filename'], image['subfolder'], image['type'])
images_output.append(image_data)
output_images[node_id] = images_output
return output_images
def get_prompt_images(prompt):
global preview_image
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
images = get_images(ws, prompt)
outputs = []
for node_id in images:
for image_data in images[node_id]:
image = Image.open(io.BytesIO(image_data))
outputs.append(image)
ws.close()
return outputs
############################################################################################################################
# Edit or add your own api workflow here. Make sure to enable dev mode in ComfyUI and to use the "Save(API Format)" option #
############################################################################################################################
prompt_text = """
{
"3": {
"class_type": "KSampler",
"inputs": {
"cfg": 8,
"denoise": 1,
"latent_image": [
"5",
0
],
"model": [
"4",
0
],
"negative": [
"7",
0
],
"positive": [
"6",
0
],
"sampler_name": "euler",
"scheduler": "normal",
"seed": -1,
"steps": 25
}
},
"4": {
"class_type": "CheckpointLoaderSimple",
"inputs": {
"ckpt_name": "sdxl_base_1.0_0.9vae.safetensors"
}
},
"5": {
"class_type": "EmptyLatentImage",
"inputs": {
"batch_size": 1,
"height": 1024,
"width": 1024
}
},
"6": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": ""
}
},
"7": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": ""
}
},
"8": {
"class_type": "VAEDecode",
"inputs": {
"samples": [
"3",
0
],
"vae": [
"4",
2
]
}
},
"9": {
"class_type": "SaveImage",
"inputs": {
"filename_prefix": "ComfyUI",
"images": [
"8",
0
]
}
}
}
"""
prompt = json.loads(prompt_text)
# You can also use the following if you'd rather just load a json, make sure to comment out or remove the line above
# with open("/path/to/workflow.json", "r", encoding="utf-8") as f:
# prompt = json.load(f)
# start and stop timer are used for live updating the preview and progress
# no point in keeping the timer ticking if it's not currently generating
def start_timer():
global active
active = True
return gr.Timer(active=True)
def stop_timer():
global active
active = False
return gr.Timer(active=False)
def update_preview():
return gr.Image(value=preview_image)
# Gradio is somewhat finicky about multiple things trying to change the same output, so we switch between preview and image, while hiding the other
def window_preview():
return gr.Image(visible=False, value=None), gr.Image(visible=True, value=None), gr.Button(visible=False), gr.Button(visible=True, value="Stop: Busy")
def window_final():
if interrupted: #if we interrupted during the process, put things back to normal
return gr.Image(visible=True, value=None), gr.Image(visible=False), gr.Button(visible=True), gr.Button(visible=False)
else:
return gr.Image(visible=True), gr.Image(visible=False, value=None), gr.Button(visible=True), gr.Button(visible=False)
# Puts the progress on the stop button
def update_progress():
if step_current == 0 or step_current == None:
x = 0
else:
x = int(100 * (step_current / step_total))
if step_current == None or active == False:
message = "Stop: Busy"
else:
message = f"Stop: {step_current} / {step_total} steps {x}%"
return gr.Button(value=message)
# You will need to do a lot of editing here to match your workflow
def process(pos, neg, width, height, cfg, seed):
if seed <= -1:
seed = random.randint(0, 999999999)
prompt["4"]["inputs"]["ckpt_name"] = "sdxl_base_1.0_0.9vae.safetensors" #if you want to change the model, do it here
prompt["6"]["inputs"]["text"] = pos
prompt["7"]["inputs"]["text"] = neg
prompt["3"]["inputs"]["seed"] = seed
prompt["3"]["inputs"]["cfg"] = cfg
prompt["5"]["inputs"]["height"] = height
prompt["5"]["inputs"]["width"] = width
global interrupted
interrupted = False
images = get_prompt_images(prompt)
global active
active = False
try:
return gr.Image(value=images[0]) #not covering batch generations in this example because it requires setting the image output to a gr.Gallery, along with some other changes
except:
return gr.Image()
with gr.Blocks(analytics_enabled=False, fill_width=True, fill_height=True,) as example:
preview_timer = gr.Timer(value=1, active=False) # You can also lower the timer to something like 0.5 to get more frequent updates, but there's not really much point to it
with gr.Row():
with gr.Column():
with gr.Group():
user_prompt = gr.Textbox(label="Positive Prompt: ", value="orange cat, full moon, vibrant impressionistic painting, bright vivid rainbow of colors", lines=5, max_lines=20)
user_negativeprompt = gr.Textbox(label="Negative Prompt: ", value="text, watermark", lines=2, max_lines=10,)
with gr.Group():
with gr.Row():
user_width = gr.Slider(label="Width", minimum=512, maximum=1600, step=64, value=1152,)
user_height = gr.Slider(label="Height", minimum=512, maximum=1600, step=64, value=896,)
with gr.Row():
user_cfg = gr.Slider(label="CFG: ", minimum=1.0, maximum=16.0, step=0.1, value=4.5,)
user_seed = gr.Slider(label="Seed: (-1 for random)", minimum=-1, maximum=999999999, step=1, value=-1,)
generate = gr.Button("Generate", variant="primary")
stop = gr.Button("Stop", variant="stop", visible=False)
with gr.Column():
output_image = gr.Image(label="Image: ", type="pil", format="jpeg", interactive=False, visible=True)
output_preview = gr.Image(label="Preview: ", type="pil", format="jpeg", interactive=False, visible=False)
# On tick, we update the preview and then the progress
preview_timer.tick(
fn=update_preview, outputs=output_preview, show_progress="hidden").then(
fn=update_progress, outputs=stop, show_progress="hidden")
# On generate we switch windows/buttons, start the update tick, diffuse the image, stop the update tick and then finally, swap the image outputs/buttons back
generate.click(
fn=window_preview, outputs=[output_image, output_preview, generate, stop], show_progress="hidden").then(
fn=start_timer, outputs=preview_timer, show_progress="hidden").then(
fn=process, inputs=[user_prompt, user_negativeprompt, user_width, user_height, user_cfg, user_seed], outputs=output_image).then(
fn=stop_timer, outputs=preview_timer, show_progress="hidden").then(
fn=window_final, outputs=[output_image, output_preview, generate, stop], show_progress="hidden")
stop.click(fn=interrupt_diffusion, show_progress="hidden")
# Adjust settings to your needs https://www.gradio.app/docs/gradio/blocks#blocks-launch for more info
example.queue(max_size=2,) # how many users can queue up in line
example.launch(share=False, inbrowser=True, server_name="0.0.0.0", server_port=7860, enable_monitoring=False) # good for LAN-only setups

View File

@ -48,7 +48,7 @@ async def send_socket_catch_exception(function, message):
@web.middleware @web.middleware
async def cache_control(request: web.Request, handler): async def cache_control(request: web.Request, handler):
response: web.Response = await handler(request) response: web.Response = await handler(request)
if request.path.endswith('.js') or request.path.endswith('.css'): if request.path.endswith('.js') or request.path.endswith('.css') or request.path.endswith('index.json'):
response.headers.setdefault('Cache-Control', 'no-cache') response.headers.setdefault('Cache-Control', 'no-cache')
return response return response
@ -657,7 +657,13 @@ class PromptServer():
logging.warning("invalid prompt: {}".format(valid[1])) logging.warning("invalid prompt: {}".format(valid[1]))
return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400) return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400)
else: else:
return web.json_response({"error": "no prompt", "node_errors": []}, status=400) error = {
"type": "no_prompt",
"message": "No prompt provided",
"details": "No prompt provided",
"extra_info": {}
}
return web.json_response({"error": error, "node_errors": {}}, status=400)
@routes.post("/queue") @routes.post("/queue")
async def post_queue(request): async def post_queue(request):