mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-04-14 07:28:48 +00:00
Compare commits
17 Commits
ab5417eb17
...
a2ecf18406
Author | SHA1 | Date | |
---|---|---|---|
![]() |
a2ecf18406 | ||
![]() |
22ad513c72 | ||
![]() |
ed945a1790 | ||
![]() |
f9207c6936 | ||
![]() |
8ad7477647 | ||
![]() |
98bdca4cb2 | ||
![]() |
a26da20a76 | ||
![]() |
e346d8584e | ||
![]() |
ab31b64412 | ||
![]() |
fe29739c68 | ||
![]() |
e8345a9b7b | ||
![]() |
8c6b9f4481 | ||
![]() |
cc7e023a4a | ||
![]() |
2f7d8159c3 | ||
![]() |
7c595586dd | ||
![]() |
80cd3fb13c | ||
![]() |
826ad087a0 |
@ -101,6 +101,7 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
|
||||
cache_group = parser.add_mutually_exclusive_group()
|
||||
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
||||
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
||||
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
||||
|
@ -102,9 +102,13 @@ class InputTypeOptions(TypedDict):
|
||||
default: bool | str | float | int | list | tuple
|
||||
"""The default value of the widget"""
|
||||
defaultInput: bool
|
||||
"""Defaults to an input slot rather than a widget"""
|
||||
"""@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
|
||||
- defaultInput on required inputs should be dropped.
|
||||
- defaultInput on optional inputs should be replaced with forceInput.
|
||||
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
|
||||
"""
|
||||
forceInput: bool
|
||||
"""`defaultInput` and also don't allow converting to a widget"""
|
||||
"""Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
|
||||
lazy: bool
|
||||
"""Declares that this input uses lazy evaluation"""
|
||||
rawLink: bool
|
||||
|
@ -48,6 +48,7 @@ def get_all_callbacks(call_type: str, transformer_options: dict, is_model_option
|
||||
|
||||
class WrappersMP:
|
||||
OUTER_SAMPLE = "outer_sample"
|
||||
PREPARE_SAMPLING = "prepare_sampling"
|
||||
SAMPLER_SAMPLE = "sampler_sample"
|
||||
CALC_COND_BATCH = "calc_cond_batch"
|
||||
APPLY_MODEL = "apply_model"
|
||||
|
@ -106,6 +106,13 @@ def cleanup_additional_models(models):
|
||||
|
||||
|
||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||
_prepare_sampling,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
|
||||
)
|
||||
return executor.execute(model, noise_shape, conds, model_options=model_options)
|
||||
|
||||
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
real_model: BaseModel = None
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
models += get_additional_models_from_model_options(model_options)
|
||||
|
@ -316,3 +316,156 @@ class LRUCache(BasicCache):
|
||||
self.children[cache_key].append(self.cache_key_set.get_data_key(child_id))
|
||||
return self
|
||||
|
||||
|
||||
class DependencyAwareCache(BasicCache):
|
||||
"""
|
||||
A cache implementation that tracks dependencies between nodes and manages
|
||||
their execution and caching accordingly. It extends the BasicCache class.
|
||||
Nodes are removed from this cache once all of their descendants have been
|
||||
executed.
|
||||
"""
|
||||
|
||||
def __init__(self, key_class):
|
||||
"""
|
||||
Initialize the DependencyAwareCache.
|
||||
|
||||
Args:
|
||||
key_class: The class used for generating cache keys.
|
||||
"""
|
||||
super().__init__(key_class)
|
||||
self.descendants = {} # Maps node_id -> set of descendant node_ids
|
||||
self.ancestors = {} # Maps node_id -> set of ancestor node_ids
|
||||
self.executed_nodes = set() # Tracks nodes that have been executed
|
||||
|
||||
def set_prompt(self, dynprompt, node_ids, is_changed_cache):
|
||||
"""
|
||||
Clear the entire cache and rebuild the dependency graph.
|
||||
|
||||
Args:
|
||||
dynprompt: The dynamic prompt object containing node information.
|
||||
node_ids: List of node IDs to initialize the cache for.
|
||||
is_changed_cache: Flag indicating if the cache has changed.
|
||||
"""
|
||||
# Clear all existing cache data
|
||||
self.cache.clear()
|
||||
self.subcaches.clear()
|
||||
self.descendants.clear()
|
||||
self.ancestors.clear()
|
||||
self.executed_nodes.clear()
|
||||
|
||||
# Call the parent method to initialize the cache with the new prompt
|
||||
super().set_prompt(dynprompt, node_ids, is_changed_cache)
|
||||
|
||||
# Rebuild the dependency graph
|
||||
self._build_dependency_graph(dynprompt, node_ids)
|
||||
|
||||
def _build_dependency_graph(self, dynprompt, node_ids):
|
||||
"""
|
||||
Build the dependency graph for all nodes.
|
||||
|
||||
Args:
|
||||
dynprompt: The dynamic prompt object containing node information.
|
||||
node_ids: List of node IDs to build the graph for.
|
||||
"""
|
||||
self.descendants.clear()
|
||||
self.ancestors.clear()
|
||||
for node_id in node_ids:
|
||||
self.descendants[node_id] = set()
|
||||
self.ancestors[node_id] = set()
|
||||
|
||||
for node_id in node_ids:
|
||||
inputs = dynprompt.get_node(node_id)["inputs"]
|
||||
for input_data in inputs.values():
|
||||
if is_link(input_data): # Check if the input is a link to another node
|
||||
ancestor_id = input_data[0]
|
||||
self.descendants[ancestor_id].add(node_id)
|
||||
self.ancestors[node_id].add(ancestor_id)
|
||||
|
||||
def set(self, node_id, value):
|
||||
"""
|
||||
Mark a node as executed and store its value in the cache.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node to store.
|
||||
value: The value to store for the node.
|
||||
"""
|
||||
self._set_immediate(node_id, value)
|
||||
self.executed_nodes.add(node_id)
|
||||
self._cleanup_ancestors(node_id)
|
||||
|
||||
def get(self, node_id):
|
||||
"""
|
||||
Retrieve the cached value for a node.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node to retrieve.
|
||||
|
||||
Returns:
|
||||
The cached value for the node.
|
||||
"""
|
||||
return self._get_immediate(node_id)
|
||||
|
||||
def ensure_subcache_for(self, node_id, children_ids):
|
||||
"""
|
||||
Ensure a subcache exists for a node and update dependencies.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the parent node.
|
||||
children_ids: List of child node IDs to associate with the parent node.
|
||||
|
||||
Returns:
|
||||
The subcache object for the node.
|
||||
"""
|
||||
subcache = super()._ensure_subcache(node_id, children_ids)
|
||||
for child_id in children_ids:
|
||||
self.descendants[node_id].add(child_id)
|
||||
self.ancestors[child_id].add(node_id)
|
||||
return subcache
|
||||
|
||||
def _cleanup_ancestors(self, node_id):
|
||||
"""
|
||||
Check if ancestors of a node can be removed from the cache.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node whose ancestors are to be checked.
|
||||
"""
|
||||
for ancestor_id in self.ancestors.get(node_id, []):
|
||||
if ancestor_id in self.executed_nodes:
|
||||
# Remove ancestor if all its descendants have been executed
|
||||
if all(descendant in self.executed_nodes for descendant in self.descendants[ancestor_id]):
|
||||
self._remove_node(ancestor_id)
|
||||
|
||||
def _remove_node(self, node_id):
|
||||
"""
|
||||
Remove a node from the cache.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node to remove.
|
||||
"""
|
||||
cache_key = self.cache_key_set.get_data_key(node_id)
|
||||
if cache_key in self.cache:
|
||||
del self.cache[cache_key]
|
||||
subcache_key = self.cache_key_set.get_subcache_key(node_id)
|
||||
if subcache_key in self.subcaches:
|
||||
del self.subcaches[subcache_key]
|
||||
|
||||
def clean_unused(self):
|
||||
"""
|
||||
Clean up unused nodes. This is a no-op for this cache implementation.
|
||||
"""
|
||||
pass
|
||||
|
||||
def recursive_debug_dump(self):
|
||||
"""
|
||||
Dump the cache and dependency graph for debugging.
|
||||
|
||||
Returns:
|
||||
A list containing the cache state and dependency graph.
|
||||
"""
|
||||
result = super().recursive_debug_dump()
|
||||
result.append({
|
||||
"descendants": self.descendants,
|
||||
"ancestors": self.ancestors,
|
||||
"executed_nodes": list(self.executed_nodes),
|
||||
})
|
||||
return result
|
||||
|
@ -209,6 +209,196 @@ def voxel_to_mesh(voxels, threshold=0.5, device=None):
|
||||
vertices = torch.fliplr(vertices)
|
||||
return vertices, faces
|
||||
|
||||
def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None):
|
||||
if device is None:
|
||||
device = torch.device("cpu")
|
||||
voxels = voxels.to(device)
|
||||
|
||||
D, H, W = voxels.shape
|
||||
|
||||
padded = torch.nn.functional.pad(voxels, (1, 1, 1, 1, 1, 1), 'constant', 0)
|
||||
z, y, x = torch.meshgrid(
|
||||
torch.arange(D, device=device),
|
||||
torch.arange(H, device=device),
|
||||
torch.arange(W, device=device),
|
||||
indexing='ij'
|
||||
)
|
||||
cell_positions = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)
|
||||
|
||||
corner_offsets = torch.tensor([
|
||||
[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
|
||||
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]
|
||||
], device=device)
|
||||
|
||||
corner_values = torch.zeros((cell_positions.shape[0], 8), device=device)
|
||||
for c, (dz, dy, dx) in enumerate(corner_offsets):
|
||||
corner_values[:, c] = padded[
|
||||
cell_positions[:, 0] + dz,
|
||||
cell_positions[:, 1] + dy,
|
||||
cell_positions[:, 2] + dx
|
||||
]
|
||||
|
||||
corner_signs = corner_values > threshold
|
||||
has_inside = torch.any(corner_signs, dim=1)
|
||||
has_outside = torch.any(~corner_signs, dim=1)
|
||||
contains_surface = has_inside & has_outside
|
||||
|
||||
active_cells = cell_positions[contains_surface]
|
||||
active_signs = corner_signs[contains_surface]
|
||||
active_values = corner_values[contains_surface]
|
||||
|
||||
if active_cells.shape[0] == 0:
|
||||
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
|
||||
|
||||
edges = torch.tensor([
|
||||
[0, 1], [0, 2], [0, 4], [1, 3],
|
||||
[1, 5], [2, 3], [2, 6], [3, 7],
|
||||
[4, 5], [4, 6], [5, 7], [6, 7]
|
||||
], device=device)
|
||||
|
||||
cell_vertices = {}
|
||||
progress = comfy.utils.ProgressBar(100)
|
||||
|
||||
for edge_idx, (e1, e2) in enumerate(edges):
|
||||
progress.update(1)
|
||||
crossing = active_signs[:, e1] != active_signs[:, e2]
|
||||
if not crossing.any():
|
||||
continue
|
||||
|
||||
cell_indices = torch.nonzero(crossing, as_tuple=True)[0]
|
||||
|
||||
v1 = active_values[cell_indices, e1]
|
||||
v2 = active_values[cell_indices, e2]
|
||||
|
||||
t = torch.zeros_like(v1, device=device)
|
||||
denom = v2 - v1
|
||||
valid = denom != 0
|
||||
t[valid] = (threshold - v1[valid]) / denom[valid]
|
||||
t[~valid] = 0.5
|
||||
|
||||
p1 = corner_offsets[e1].float()
|
||||
p2 = corner_offsets[e2].float()
|
||||
|
||||
intersection = p1.unsqueeze(0) + t.unsqueeze(1) * (p2.unsqueeze(0) - p1.unsqueeze(0))
|
||||
|
||||
for i, point in zip(cell_indices.tolist(), intersection):
|
||||
if i not in cell_vertices:
|
||||
cell_vertices[i] = []
|
||||
cell_vertices[i].append(point)
|
||||
|
||||
# Calculate the final vertices as the average of intersection points for each cell
|
||||
vertices = []
|
||||
vertex_lookup = {}
|
||||
|
||||
vert_progress_mod = round(len(cell_vertices)/50)
|
||||
|
||||
for i, points in cell_vertices.items():
|
||||
if not i % vert_progress_mod:
|
||||
progress.update(1)
|
||||
|
||||
if points:
|
||||
vertex = torch.stack(points).mean(dim=0)
|
||||
vertex = vertex + active_cells[i].float()
|
||||
vertex_lookup[tuple(active_cells[i].tolist())] = len(vertices)
|
||||
vertices.append(vertex)
|
||||
|
||||
if not vertices:
|
||||
return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)
|
||||
|
||||
final_vertices = torch.stack(vertices)
|
||||
|
||||
inside_corners_mask = active_signs
|
||||
outside_corners_mask = ~active_signs
|
||||
|
||||
inside_counts = inside_corners_mask.sum(dim=1, keepdim=True).float()
|
||||
outside_counts = outside_corners_mask.sum(dim=1, keepdim=True).float()
|
||||
|
||||
inside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
|
||||
outside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
|
||||
|
||||
for i in range(8):
|
||||
mask_inside = inside_corners_mask[:, i].unsqueeze(1)
|
||||
mask_outside = outside_corners_mask[:, i].unsqueeze(1)
|
||||
inside_pos += corner_offsets[i].float().unsqueeze(0) * mask_inside
|
||||
outside_pos += corner_offsets[i].float().unsqueeze(0) * mask_outside
|
||||
|
||||
inside_pos /= inside_counts
|
||||
outside_pos /= outside_counts
|
||||
gradients = inside_pos - outside_pos
|
||||
|
||||
pos_dirs = torch.tensor([
|
||||
[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]
|
||||
], device=device)
|
||||
|
||||
cross_products = [
|
||||
torch.linalg.cross(pos_dirs[i].float(), pos_dirs[j].float())
|
||||
for i in range(3) for j in range(i+1, 3)
|
||||
]
|
||||
|
||||
faces = []
|
||||
all_keys = set(vertex_lookup.keys())
|
||||
|
||||
face_progress_mod = round(len(active_cells)/38*3)
|
||||
|
||||
for pair_idx, (i, j) in enumerate([(0,1), (0,2), (1,2)]):
|
||||
dir_i = pos_dirs[i]
|
||||
dir_j = pos_dirs[j]
|
||||
cross_product = cross_products[pair_idx]
|
||||
|
||||
ni_positions = active_cells + dir_i
|
||||
nj_positions = active_cells + dir_j
|
||||
diag_positions = active_cells + dir_i + dir_j
|
||||
|
||||
alignments = torch.matmul(gradients, cross_product)
|
||||
|
||||
valid_quads = []
|
||||
quad_indices = []
|
||||
|
||||
for idx, active_cell in enumerate(active_cells):
|
||||
if not idx % face_progress_mod:
|
||||
progress.update(1)
|
||||
cell_key = tuple(active_cell.tolist())
|
||||
ni_key = tuple(ni_positions[idx].tolist())
|
||||
nj_key = tuple(nj_positions[idx].tolist())
|
||||
diag_key = tuple(diag_positions[idx].tolist())
|
||||
|
||||
if cell_key in all_keys and ni_key in all_keys and nj_key in all_keys and diag_key in all_keys:
|
||||
v0 = vertex_lookup[cell_key]
|
||||
v1 = vertex_lookup[ni_key]
|
||||
v2 = vertex_lookup[nj_key]
|
||||
v3 = vertex_lookup[diag_key]
|
||||
|
||||
valid_quads.append((v0, v1, v2, v3))
|
||||
quad_indices.append(idx)
|
||||
|
||||
for q_idx, (v0, v1, v2, v3) in enumerate(valid_quads):
|
||||
cell_idx = quad_indices[q_idx]
|
||||
if alignments[cell_idx] > 0:
|
||||
faces.append(torch.tensor([v0, v1, v3], device=device, dtype=torch.long))
|
||||
faces.append(torch.tensor([v0, v3, v2], device=device, dtype=torch.long))
|
||||
else:
|
||||
faces.append(torch.tensor([v0, v3, v1], device=device, dtype=torch.long))
|
||||
faces.append(torch.tensor([v0, v2, v3], device=device, dtype=torch.long))
|
||||
|
||||
if faces:
|
||||
faces = torch.stack(faces)
|
||||
else:
|
||||
faces = torch.zeros((0, 3), dtype=torch.long, device=device)
|
||||
|
||||
v_min = 0
|
||||
v_max = max(D, H, W)
|
||||
|
||||
final_vertices = final_vertices - (v_min + v_max) / 2
|
||||
|
||||
scale = (v_max - v_min) / 2
|
||||
if scale > 0:
|
||||
final_vertices = final_vertices / scale
|
||||
|
||||
final_vertices = torch.fliplr(final_vertices)
|
||||
|
||||
return final_vertices, faces
|
||||
|
||||
class MESH:
|
||||
def __init__(self, vertices, faces):
|
||||
@ -237,6 +427,34 @@ class VoxelToMeshBasic:
|
||||
|
||||
return (MESH(torch.stack(vertices), torch.stack(faces)), )
|
||||
|
||||
class VoxelToMesh:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"voxel": ("VOXEL", ),
|
||||
"algorithm": (["surface net", "basic"], ),
|
||||
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MESH",)
|
||||
FUNCTION = "decode"
|
||||
|
||||
CATEGORY = "3d"
|
||||
|
||||
def decode(self, voxel, algorithm, threshold):
|
||||
vertices = []
|
||||
faces = []
|
||||
|
||||
if algorithm == "basic":
|
||||
mesh_function = voxel_to_mesh
|
||||
elif algorithm == "surface net":
|
||||
mesh_function = voxel_to_mesh_surfnet
|
||||
|
||||
for x in voxel.data:
|
||||
v, f = mesh_function(x, threshold=threshold, device=None)
|
||||
vertices.append(v)
|
||||
faces.append(f)
|
||||
|
||||
return (MESH(torch.stack(vertices), torch.stack(faces)), )
|
||||
|
||||
|
||||
def save_glb(vertices, faces, filepath, metadata=None):
|
||||
"""
|
||||
@ -411,5 +629,6 @@ NODE_CLASS_MAPPINGS = {
|
||||
"Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView,
|
||||
"VAEDecodeHunyuan3D": VAEDecodeHunyuan3D,
|
||||
"VoxelToMeshBasic": VoxelToMeshBasic,
|
||||
"VoxelToMesh": VoxelToMesh,
|
||||
"SaveGLB": SaveGLB,
|
||||
}
|
||||
|
59
execution.py
59
execution.py
@ -15,7 +15,7 @@ import nodes
|
||||
import comfy.model_management
|
||||
from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
|
||||
from comfy_execution.graph_utils import is_link, GraphBuilder
|
||||
from comfy_execution.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID
|
||||
from comfy_execution.caching import HierarchicalCache, LRUCache, DependencyAwareCache, CacheKeySetInputSignature, CacheKeySetID
|
||||
from comfy_execution.validation import validate_node_input
|
||||
|
||||
class ExecutionResult(Enum):
|
||||
@ -59,20 +59,27 @@ class IsChangedCache:
|
||||
self.is_changed[node_id] = node["is_changed"]
|
||||
return self.is_changed[node_id]
|
||||
|
||||
class CacheSet:
|
||||
def __init__(self, lru_size=None):
|
||||
if lru_size is None or lru_size == 0:
|
||||
self.init_classic_cache()
|
||||
else:
|
||||
self.init_lru_cache(lru_size)
|
||||
self.all = [self.outputs, self.ui, self.objects]
|
||||
|
||||
# Useful for those with ample RAM/VRAM -- allows experimenting without
|
||||
# blowing away the cache every time
|
||||
def init_lru_cache(self, cache_size):
|
||||
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
|
||||
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
|
||||
self.objects = HierarchicalCache(CacheKeySetID)
|
||||
class CacheType(Enum):
|
||||
CLASSIC = 0
|
||||
LRU = 1
|
||||
DEPENDENCY_AWARE = 2
|
||||
|
||||
|
||||
class CacheSet:
|
||||
def __init__(self, cache_type=None, cache_size=None):
|
||||
if cache_type == CacheType.DEPENDENCY_AWARE:
|
||||
self.init_dependency_aware_cache()
|
||||
logging.info("Disabling intermediate node cache.")
|
||||
elif cache_type == CacheType.LRU:
|
||||
if cache_size is None:
|
||||
cache_size = 0
|
||||
self.init_lru_cache(cache_size)
|
||||
logging.info("Using LRU cache")
|
||||
else:
|
||||
self.init_classic_cache()
|
||||
|
||||
self.all = [self.outputs, self.ui, self.objects]
|
||||
|
||||
# Performs like the old cache -- dump data ASAP
|
||||
def init_classic_cache(self):
|
||||
@ -80,6 +87,17 @@ class CacheSet:
|
||||
self.ui = HierarchicalCache(CacheKeySetInputSignature)
|
||||
self.objects = HierarchicalCache(CacheKeySetID)
|
||||
|
||||
def init_lru_cache(self, cache_size):
|
||||
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
|
||||
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
|
||||
self.objects = HierarchicalCache(CacheKeySetID)
|
||||
|
||||
# only hold cached items while the decendents have not executed
|
||||
def init_dependency_aware_cache(self):
|
||||
self.outputs = DependencyAwareCache(CacheKeySetInputSignature)
|
||||
self.ui = DependencyAwareCache(CacheKeySetInputSignature)
|
||||
self.objects = DependencyAwareCache(CacheKeySetID)
|
||||
|
||||
def recursive_debug_dump(self):
|
||||
result = {
|
||||
"outputs": self.outputs.recursive_debug_dump(),
|
||||
@ -414,13 +432,14 @@ def execute(server, dynprompt, caches, current_item, extra_data, executed, promp
|
||||
return (ExecutionResult.SUCCESS, None, None)
|
||||
|
||||
class PromptExecutor:
|
||||
def __init__(self, server, lru_size=None):
|
||||
self.lru_size = lru_size
|
||||
def __init__(self, server, cache_type=False, cache_size=None):
|
||||
self.cache_size = cache_size
|
||||
self.cache_type = cache_type
|
||||
self.server = server
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.caches = CacheSet(self.lru_size)
|
||||
self.caches = CacheSet(cache_type=self.cache_type, cache_size=self.cache_size)
|
||||
self.status_messages = []
|
||||
self.success = True
|
||||
|
||||
@ -775,7 +794,7 @@ def validate_prompt(prompt):
|
||||
"details": f"Node ID '#{x}'",
|
||||
"extra_info": {}
|
||||
}
|
||||
return (False, error, [], [])
|
||||
return (False, error, [], {})
|
||||
|
||||
class_type = prompt[x]['class_type']
|
||||
class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None)
|
||||
@ -786,7 +805,7 @@ def validate_prompt(prompt):
|
||||
"details": f"Node ID '#{x}'",
|
||||
"extra_info": {}
|
||||
}
|
||||
return (False, error, [], [])
|
||||
return (False, error, [], {})
|
||||
|
||||
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True:
|
||||
outputs.add(x)
|
||||
@ -798,7 +817,7 @@ def validate_prompt(prompt):
|
||||
"details": "",
|
||||
"extra_info": {}
|
||||
}
|
||||
return (False, error, [], [])
|
||||
return (False, error, [], {})
|
||||
|
||||
good_outputs = set()
|
||||
errors = []
|
||||
|
8
main.py
8
main.py
@ -156,7 +156,13 @@ def cuda_malloc_warning():
|
||||
|
||||
def prompt_worker(q, server_instance):
|
||||
current_time: float = 0.0
|
||||
e = execution.PromptExecutor(server_instance, lru_size=args.cache_lru)
|
||||
cache_type = execution.CacheType.CLASSIC
|
||||
if args.cache_lru > 0:
|
||||
cache_type = execution.CacheType.LRU
|
||||
elif args.cache_none:
|
||||
cache_type = execution.CacheType.DEPENDENCY_AWARE
|
||||
|
||||
e = execution.PromptExecutor(server_instance, cache_type=cache_type, cache_size=args.cache_lru)
|
||||
last_gc_collect = 0
|
||||
need_gc = False
|
||||
gc_collect_interval = 10.0
|
||||
|
17
nodes.py
17
nodes.py
@ -786,6 +786,8 @@ class ControlNetLoader:
|
||||
def load_controlnet(self, control_net_name):
|
||||
controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
|
||||
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
|
||||
if controlnet is None:
|
||||
raise RuntimeError("ERROR: controlnet file is invalid and does not contain a valid controlnet model.")
|
||||
return (controlnet,)
|
||||
|
||||
class DiffControlNetLoader:
|
||||
@ -1690,6 +1692,9 @@ class LoadImage:
|
||||
if 'A' in i.getbands():
|
||||
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
elif i.mode == 'P' and 'transparency' in i.info:
|
||||
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
|
||||
mask = 1. - torch.from_numpy(mask)
|
||||
else:
|
||||
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
||||
output_images.append(image)
|
||||
@ -2125,21 +2130,25 @@ def get_module_name(module_path: str) -> str:
|
||||
|
||||
|
||||
def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes") -> bool:
|
||||
module_name = os.path.basename(module_path)
|
||||
module_name = get_module_name(module_path)
|
||||
if os.path.isfile(module_path):
|
||||
sp = os.path.splitext(module_path)
|
||||
module_name = sp[0]
|
||||
sys_module_name = module_name
|
||||
elif os.path.isdir(module_path):
|
||||
sys_module_name = module_path.replace(".", "_x_")
|
||||
|
||||
try:
|
||||
logging.debug("Trying to load custom node {}".format(module_path))
|
||||
if os.path.isfile(module_path):
|
||||
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
|
||||
module_spec = importlib.util.spec_from_file_location(sys_module_name, module_path)
|
||||
module_dir = os.path.split(module_path)[0]
|
||||
else:
|
||||
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
|
||||
module_spec = importlib.util.spec_from_file_location(sys_module_name, os.path.join(module_path, "__init__.py"))
|
||||
module_dir = module_path
|
||||
|
||||
module = importlib.util.module_from_spec(module_spec)
|
||||
sys.modules[module_name] = module
|
||||
sys.modules[sys_module_name] = module
|
||||
module_spec.loader.exec_module(module)
|
||||
|
||||
LOADED_MODULE_DIRS[module_name] = os.path.abspath(module_dir)
|
||||
|
@ -1,4 +1,4 @@
|
||||
comfyui-frontend-package==1.14.6
|
||||
comfyui-frontend-package==1.15.13
|
||||
torch
|
||||
torchsde
|
||||
torchvision
|
||||
|
309
script_examples/gradio_websockets_api_example.py
Normal file
309
script_examples/gradio_websockets_api_example.py
Normal file
@ -0,0 +1,309 @@
|
||||
# This is a Gradio example demonstrating using the websocket api and that also decodes preview images
|
||||
# Gradio has a lot of idiosyncrasies and I'm definitely not an expert at coding for it
|
||||
# I'm sure there are a million and one better ways to code this, but this works pretty well and should get you started
|
||||
# I suggest taking the time to check any relevant comments throughout the code
|
||||
# For more info on working with Gradio: https://www.gradio.app/docs
|
||||
|
||||
# Ensure that ComfyUI has latent previews enabled
|
||||
# If you use Comfy Manager, make sure to set the preview type there because it will override --preview-method auto/latent2rgb/taesd launch flag settings
|
||||
# Check or change the preview_method in "/custom_nodes/ComfyUI-Manager/config.ini"
|
||||
|
||||
# If you chose to install Gradio to your ComfyUI python venv, open a command prompt in this script_examples directory and run:
|
||||
# ..\..\python_embeded\python.exe -s ..\script_examples\gradio_websockets_api_example.py
|
||||
# To launch the app
|
||||
|
||||
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
|
||||
import uuid
|
||||
import json
|
||||
import urllib.request
|
||||
import urllib.parse
|
||||
from PIL import Image
|
||||
import io
|
||||
from io import BytesIO
|
||||
import random
|
||||
|
||||
#If you want to use your local ComfyUI python installation, you'll need to navigate to your comfyui/python_embeded folder, open a cmd prompt and run "python.exe -m pip install gradio"
|
||||
import gradio as gr
|
||||
|
||||
# adjust to your ComfyUI API settings
|
||||
server_address = "127.0.0.1:8188"
|
||||
client_id = str(uuid.uuid4())
|
||||
|
||||
#some globals to store previews, active state and progress
|
||||
preview_image = None
|
||||
active = False
|
||||
interrupted = False
|
||||
step_current = None
|
||||
step_total = None
|
||||
|
||||
def interrupt_diffusion():
|
||||
global interrupted, step_current, step_total
|
||||
interrupted = True
|
||||
step_current = None
|
||||
step_total = None
|
||||
req = urllib.request.Request("http://{}/interrupt".format(server_address), method='POST')
|
||||
return urllib.request.urlopen(req)
|
||||
|
||||
def queue_prompt(prompt):
|
||||
p = {"prompt": prompt, "client_id": client_id}
|
||||
data = json.dumps(p).encode('utf-8')
|
||||
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
|
||||
return json.loads(urllib.request.urlopen(req).read())
|
||||
|
||||
def get_image(filename, subfolder, folder_type):
|
||||
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
|
||||
url_values = urllib.parse.urlencode(data)
|
||||
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
|
||||
return response.read()
|
||||
|
||||
def get_history(prompt_id):
|
||||
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
|
||||
return json.loads(response.read())
|
||||
|
||||
def get_images(ws, prompt):
|
||||
global preview_image, active, step_current, step_total
|
||||
prompt_id = queue_prompt(prompt)['prompt_id']
|
||||
output_images = {}
|
||||
while True:
|
||||
out = ws.recv()
|
||||
if isinstance(out, str):
|
||||
message = json.loads(out)
|
||||
if message['type'] == 'executing':
|
||||
data = message['data']
|
||||
if data['node'] is None and data['prompt_id'] == prompt_id:
|
||||
preview_image = None #clear these globals on completion just in case
|
||||
step_current = None
|
||||
step_total = None
|
||||
active = False
|
||||
break #Execution is done
|
||||
elif message['type'] == 'progress':
|
||||
data = message['data']
|
||||
step_current = data['value']
|
||||
step_total = data['max']
|
||||
else:
|
||||
bytesIO = BytesIO(out[8:])
|
||||
preview_image = Image.open(bytesIO) # This is your preview in PIL image format
|
||||
|
||||
history = get_history(prompt_id)[prompt_id]
|
||||
for node_id in history['outputs']:
|
||||
node_output = history['outputs'][node_id]
|
||||
images_output = []
|
||||
if 'images' in node_output:
|
||||
for image in node_output['images']:
|
||||
image_data = get_image(image['filename'], image['subfolder'], image['type'])
|
||||
images_output.append(image_data)
|
||||
output_images[node_id] = images_output
|
||||
|
||||
return output_images
|
||||
|
||||
def get_prompt_images(prompt):
|
||||
global preview_image
|
||||
ws = websocket.WebSocket()
|
||||
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
|
||||
images = get_images(ws, prompt)
|
||||
outputs = []
|
||||
for node_id in images:
|
||||
for image_data in images[node_id]:
|
||||
image = Image.open(io.BytesIO(image_data))
|
||||
outputs.append(image)
|
||||
ws.close()
|
||||
return outputs
|
||||
|
||||
############################################################################################################################
|
||||
# Edit or add your own api workflow here. Make sure to enable dev mode in ComfyUI and to use the "Save(API Format)" option #
|
||||
############################################################################################################################
|
||||
prompt_text = """
|
||||
{
|
||||
"3": {
|
||||
"class_type": "KSampler",
|
||||
"inputs": {
|
||||
"cfg": 8,
|
||||
"denoise": 1,
|
||||
"latent_image": [
|
||||
"5",
|
||||
0
|
||||
],
|
||||
"model": [
|
||||
"4",
|
||||
0
|
||||
],
|
||||
"negative": [
|
||||
"7",
|
||||
0
|
||||
],
|
||||
"positive": [
|
||||
"6",
|
||||
0
|
||||
],
|
||||
"sampler_name": "euler",
|
||||
"scheduler": "normal",
|
||||
"seed": -1,
|
||||
"steps": 25
|
||||
}
|
||||
},
|
||||
"4": {
|
||||
"class_type": "CheckpointLoaderSimple",
|
||||
"inputs": {
|
||||
"ckpt_name": "sdxl_base_1.0_0.9vae.safetensors"
|
||||
}
|
||||
},
|
||||
"5": {
|
||||
"class_type": "EmptyLatentImage",
|
||||
"inputs": {
|
||||
"batch_size": 1,
|
||||
"height": 1024,
|
||||
"width": 1024
|
||||
}
|
||||
},
|
||||
"6": {
|
||||
"class_type": "CLIPTextEncode",
|
||||
"inputs": {
|
||||
"clip": [
|
||||
"4",
|
||||
1
|
||||
],
|
||||
"text": ""
|
||||
}
|
||||
},
|
||||
"7": {
|
||||
"class_type": "CLIPTextEncode",
|
||||
"inputs": {
|
||||
"clip": [
|
||||
"4",
|
||||
1
|
||||
],
|
||||
"text": ""
|
||||
}
|
||||
},
|
||||
"8": {
|
||||
"class_type": "VAEDecode",
|
||||
"inputs": {
|
||||
"samples": [
|
||||
"3",
|
||||
0
|
||||
],
|
||||
"vae": [
|
||||
"4",
|
||||
2
|
||||
]
|
||||
}
|
||||
},
|
||||
"9": {
|
||||
"class_type": "SaveImage",
|
||||
"inputs": {
|
||||
"filename_prefix": "ComfyUI",
|
||||
"images": [
|
||||
"8",
|
||||
0
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
prompt = json.loads(prompt_text)
|
||||
|
||||
# You can also use the following if you'd rather just load a json, make sure to comment out or remove the line above
|
||||
# with open("/path/to/workflow.json", "r", encoding="utf-8") as f:
|
||||
# prompt = json.load(f)
|
||||
|
||||
# start and stop timer are used for live updating the preview and progress
|
||||
# no point in keeping the timer ticking if it's not currently generating
|
||||
def start_timer():
|
||||
global active
|
||||
active = True
|
||||
return gr.Timer(active=True)
|
||||
|
||||
def stop_timer():
|
||||
global active
|
||||
active = False
|
||||
return gr.Timer(active=False)
|
||||
|
||||
def update_preview():
|
||||
return gr.Image(value=preview_image)
|
||||
|
||||
# Gradio is somewhat finicky about multiple things trying to change the same output, so we switch between preview and image, while hiding the other
|
||||
def window_preview():
|
||||
return gr.Image(visible=False, value=None), gr.Image(visible=True, value=None), gr.Button(visible=False), gr.Button(visible=True, value="Stop: Busy")
|
||||
|
||||
def window_final():
|
||||
if interrupted: #if we interrupted during the process, put things back to normal
|
||||
return gr.Image(visible=True, value=None), gr.Image(visible=False), gr.Button(visible=True), gr.Button(visible=False)
|
||||
else:
|
||||
return gr.Image(visible=True), gr.Image(visible=False, value=None), gr.Button(visible=True), gr.Button(visible=False)
|
||||
|
||||
# Puts the progress on the stop button
|
||||
def update_progress():
|
||||
if step_current == 0 or step_current == None:
|
||||
x = 0
|
||||
else:
|
||||
x = int(100 * (step_current / step_total))
|
||||
if step_current == None or active == False:
|
||||
message = "Stop: Busy"
|
||||
else:
|
||||
message = f"Stop: {step_current} / {step_total} steps {x}%"
|
||||
return gr.Button(value=message)
|
||||
|
||||
# You will need to do a lot of editing here to match your workflow
|
||||
def process(pos, neg, width, height, cfg, seed):
|
||||
if seed <= -1:
|
||||
seed = random.randint(0, 999999999)
|
||||
prompt["4"]["inputs"]["ckpt_name"] = "sdxl_base_1.0_0.9vae.safetensors" #if you want to change the model, do it here
|
||||
prompt["6"]["inputs"]["text"] = pos
|
||||
prompt["7"]["inputs"]["text"] = neg
|
||||
prompt["3"]["inputs"]["seed"] = seed
|
||||
prompt["3"]["inputs"]["cfg"] = cfg
|
||||
prompt["5"]["inputs"]["height"] = height
|
||||
prompt["5"]["inputs"]["width"] = width
|
||||
|
||||
global interrupted
|
||||
interrupted = False
|
||||
|
||||
images = get_prompt_images(prompt)
|
||||
|
||||
global active
|
||||
active = False
|
||||
|
||||
try:
|
||||
return gr.Image(value=images[0]) #not covering batch generations in this example because it requires setting the image output to a gr.Gallery, along with some other changes
|
||||
except:
|
||||
return gr.Image()
|
||||
|
||||
with gr.Blocks(analytics_enabled=False, fill_width=True, fill_height=True,) as example:
|
||||
preview_timer = gr.Timer(value=1, active=False) # You can also lower the timer to something like 0.5 to get more frequent updates, but there's not really much point to it
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
with gr.Group():
|
||||
user_prompt = gr.Textbox(label="Positive Prompt: ", value="orange cat, full moon, vibrant impressionistic painting, bright vivid rainbow of colors", lines=5, max_lines=20)
|
||||
user_negativeprompt = gr.Textbox(label="Negative Prompt: ", value="text, watermark", lines=2, max_lines=10,)
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
user_width = gr.Slider(label="Width", minimum=512, maximum=1600, step=64, value=1152,)
|
||||
user_height = gr.Slider(label="Height", minimum=512, maximum=1600, step=64, value=896,)
|
||||
with gr.Row():
|
||||
user_cfg = gr.Slider(label="CFG: ", minimum=1.0, maximum=16.0, step=0.1, value=4.5,)
|
||||
user_seed = gr.Slider(label="Seed: (-1 for random)", minimum=-1, maximum=999999999, step=1, value=-1,)
|
||||
generate = gr.Button("Generate", variant="primary")
|
||||
stop = gr.Button("Stop", variant="stop", visible=False)
|
||||
with gr.Column():
|
||||
output_image = gr.Image(label="Image: ", type="pil", format="jpeg", interactive=False, visible=True)
|
||||
output_preview = gr.Image(label="Preview: ", type="pil", format="jpeg", interactive=False, visible=False)
|
||||
|
||||
# On tick, we update the preview and then the progress
|
||||
preview_timer.tick(
|
||||
fn=update_preview, outputs=output_preview, show_progress="hidden").then(
|
||||
fn=update_progress, outputs=stop, show_progress="hidden")
|
||||
|
||||
# On generate we switch windows/buttons, start the update tick, diffuse the image, stop the update tick and then finally, swap the image outputs/buttons back
|
||||
generate.click(
|
||||
fn=window_preview, outputs=[output_image, output_preview, generate, stop], show_progress="hidden").then(
|
||||
fn=start_timer, outputs=preview_timer, show_progress="hidden").then(
|
||||
fn=process, inputs=[user_prompt, user_negativeprompt, user_width, user_height, user_cfg, user_seed], outputs=output_image).then(
|
||||
fn=stop_timer, outputs=preview_timer, show_progress="hidden").then(
|
||||
fn=window_final, outputs=[output_image, output_preview, generate, stop], show_progress="hidden")
|
||||
|
||||
stop.click(fn=interrupt_diffusion, show_progress="hidden")
|
||||
|
||||
# Adjust settings to your needs https://www.gradio.app/docs/gradio/blocks#blocks-launch for more info
|
||||
example.queue(max_size=2,) # how many users can queue up in line
|
||||
example.launch(share=False, inbrowser=True, server_name="0.0.0.0", server_port=7860, enable_monitoring=False) # good for LAN-only setups
|
10
server.py
10
server.py
@ -48,7 +48,7 @@ async def send_socket_catch_exception(function, message):
|
||||
@web.middleware
|
||||
async def cache_control(request: web.Request, handler):
|
||||
response: web.Response = await handler(request)
|
||||
if request.path.endswith('.js') or request.path.endswith('.css'):
|
||||
if request.path.endswith('.js') or request.path.endswith('.css') or request.path.endswith('index.json'):
|
||||
response.headers.setdefault('Cache-Control', 'no-cache')
|
||||
return response
|
||||
|
||||
@ -657,7 +657,13 @@ class PromptServer():
|
||||
logging.warning("invalid prompt: {}".format(valid[1]))
|
||||
return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400)
|
||||
else:
|
||||
return web.json_response({"error": "no prompt", "node_errors": []}, status=400)
|
||||
error = {
|
||||
"type": "no_prompt",
|
||||
"message": "No prompt provided",
|
||||
"details": "No prompt provided",
|
||||
"extra_info": {}
|
||||
}
|
||||
return web.json_response({"error": error, "node_errors": {}}, status=400)
|
||||
|
||||
@routes.post("/queue")
|
||||
async def post_queue(request):
|
||||
|
Loading…
Reference in New Issue
Block a user