Compare commits

...

7 Commits

Author SHA1 Message Date
Denis Kuznedelev
6cc6ffdfdd
Merge 618a7a3fea into 98bdca4cb2 2025-04-10 08:50:37 -04:00
GodOfNothing
618a7a3fea Added sanity check that upscales is non-decreasing sequence 2025-03-24 18:25:26 +03:00
GodOfNothing
c868cb2055 Added option to specify list of scales as comma-separated string 2025-03-24 18:09:10 +03:00
GodOfNothing
9f9db7fc29 Removed lcm_scalewise from KSAMPLER_NAMES 2025-03-24 16:17:39 +03:00
GodOfNothing
ae0b0da8b8 Added SamplerLCMScalewise node 2025-03-24 14:26:39 +03:00
GodOfNothing
bdc8c2a8c7 Added lcm_scalewise to KSAMPLER_NAMES 2025-03-23 15:54:49 +03:00
GodOfNothing
0a72baba13 Added lcm_scalewise 2025-03-23 15:35:26 +03:00

View File

@ -1,5 +1,6 @@
import comfy.samplers
import comfy.utils
from comfy.k_diffusion.sampling import default_noise_sampler
import torch
import numpy as np
from tqdm.auto import trange
@ -54,6 +55,70 @@ class SamplerLCMUpscale:
scale_steps = None
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
return (sampler, )
@torch.no_grad()
def sample_lcm_scalewise(model, x, sigmas, extra_args=None, callback=None, disable=None, upscales=None, upscale_method="bicubic"):
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
if upscales is not None:
# Resolution is increased on each step except the last one
assert len(upscales) == len(sigmas) - 2
orig_shape = x.size()
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
x = denoised
if i < len(upscales):
x = comfy.utils.common_upscale(x, round(orig_shape[-1] * upscales[i]), round(orig_shape[-2] * upscales[i]), upscale_method, "disabled")
if sigmas[i + 1] > 0:
# Since the size of noise if changing, noise_sampler has to be redefined each time
noise_sampler = default_noise_sampler(x, seed=seed)
# Noise using the model's scheduler
x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
return x
class SamplerLCMScalewise:
upscale_methods = ["bicubic", "bilinear", "nearest-exact"]
@classmethod
def INPUT_TYPES(s):
return {
"required":
{
"upscales": ("STRING", {"default": ""}),
"upscale_method": (s.upscale_methods,),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def _validate_upscales(self, upscales):
if not upscales:
return
for i in range(1, len(upscales)):
if upscales[i] < upscales[i-1]:
raise ValueError("`upscales` is expected to be non-decreasing sequence of numbers")
def get_sampler(self, upscales, upscale_method):
# Turn comma-separated list into string
upscales = [float(value) for value in upscales.split(',')]
self._validate_upscales(upscales)
if len(upscales) == 0:
upscales = None
sampler = comfy.samplers.KSAMPLER(sample_lcm_scalewise, extra_options={"upscales": upscales, "upscale_method": upscale_method})
return (sampler, )
from comfy.k_diffusion.sampling import to_d
import comfy.model_patcher
@ -103,6 +168,7 @@ class SamplerEulerCFGpp:
NODE_CLASS_MAPPINGS = {
"SamplerLCMUpscale": SamplerLCMUpscale,
"SamplerLCMScalewise": SamplerLCMScalewise,
"SamplerEulerCFGpp": SamplerEulerCFGpp,
}