Added SamplerLCMScalewise node

This commit is contained in:
GodOfNothing 2025-03-24 14:26:39 +03:00
parent bdc8c2a8c7
commit ae0b0da8b8
2 changed files with 60 additions and 24 deletions

View File

@ -929,30 +929,6 @@ def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, n
return x
# x0 =
@torch.no_grad()
def sample_lcm_scalewise(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
scales = extra_args.get("scales", None)
if scales:
assert len(scales) == len(sigmas) - 1, "Number of scales must be equal to number of sampling steps minus one."
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
x = denoised
if sigmas[i + 1] > 0:
if scales:
# Interpolate to next scale
x = nn.functional.interpolate(x, size=scales[i + 1], mode='bicubic')
x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
return x
@torch.no_grad()
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):

View File

@ -1,5 +1,6 @@
import comfy.samplers
import comfy.utils
from comfy.k_diffusion.sampling import default_noise_sampler
import torch
import numpy as np
from tqdm.auto import trange
@ -54,6 +55,64 @@ class SamplerLCMUpscale:
scale_steps = None
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
return (sampler, )
@torch.no_grad()
def sample_lcm_scalewise(model, x, sigmas, extra_args=None, callback=None, disable=None, total_upscale=2.0, upscale_method="bislerp", upscale_steps=None):
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
if upscale_steps is None:
upscale_steps = max(len(sigmas) // 2 + 1, 2)
else:
upscale_steps += 1
upscale_steps = min(upscale_steps, len(sigmas) + 1)
upscales = np.linspace(1.0, total_upscale, upscale_steps)[1:]
orig_shape = x.size()
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
x = denoised
if i < len(upscales):
x = comfy.utils.common_upscale(x, round(orig_shape[-1] * upscales[i]), round(orig_shape[-2] * upscales[i]), upscale_method, "disabled")
if sigmas[i + 1] > 0:
# Since the size of noise if changing, noise_sampler has to be redefined each time
noise_sampler = default_noise_sampler(x, seed=seed)
# Noise using the model's scheduler
x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
return x
class SamplerLCMScalewise:
upscale_methods = ["bicubic", "bilinear", "nearest-exact"]
@classmethod
def INPUT_TYPES(s):
return {
"required":
{
"scale_ratio": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 4.0, "step": 0.25}),
"scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}),
"upscale_method": (s.upscale_methods,),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, scale_ratio, scale_steps, upscale_method):
if scale_steps < 0:
scale_steps = None
sampler = comfy.samplers.KSAMPLER(sample_lcm_scalewise, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
return (sampler, )
from comfy.k_diffusion.sampling import to_d
import comfy.model_patcher
@ -103,6 +162,7 @@ class SamplerEulerCFGpp:
NODE_CLASS_MAPPINGS = {
"SamplerLCMUpscale": SamplerLCMUpscale,
"SamplerLCMScalewise": SamplerLCMScalewise,
"SamplerEulerCFGpp": SamplerEulerCFGpp,
}