mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-04-15 16:13:29 +00:00
Added SamplerLCMScalewise node
This commit is contained in:
parent
bdc8c2a8c7
commit
ae0b0da8b8
@ -929,30 +929,6 @@ def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, n
|
||||
return x
|
||||
|
||||
|
||||
# x0 =
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_lcm_scalewise(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
scales = extra_args.get("scales", None)
|
||||
if scales:
|
||||
assert len(scales) == len(sigmas) - 1, "Number of scales must be equal to number of sampling steps minus one."
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
x = denoised
|
||||
if sigmas[i + 1] > 0:
|
||||
if scales:
|
||||
# Interpolate to next scale
|
||||
x = nn.functional.interpolate(x, size=scales[i + 1], mode='bicubic')
|
||||
x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
||||
|
@ -1,5 +1,6 @@
|
||||
import comfy.samplers
|
||||
import comfy.utils
|
||||
from comfy.k_diffusion.sampling import default_noise_sampler
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm.auto import trange
|
||||
@ -54,6 +55,64 @@ class SamplerLCMUpscale:
|
||||
scale_steps = None
|
||||
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
|
||||
return (sampler, )
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_lcm_scalewise(model, x, sigmas, extra_args=None, callback=None, disable=None, total_upscale=2.0, upscale_method="bislerp", upscale_steps=None):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
|
||||
if upscale_steps is None:
|
||||
upscale_steps = max(len(sigmas) // 2 + 1, 2)
|
||||
else:
|
||||
upscale_steps += 1
|
||||
upscale_steps = min(upscale_steps, len(sigmas) + 1)
|
||||
|
||||
upscales = np.linspace(1.0, total_upscale, upscale_steps)[1:]
|
||||
|
||||
orig_shape = x.size()
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
x = denoised
|
||||
if i < len(upscales):
|
||||
x = comfy.utils.common_upscale(x, round(orig_shape[-1] * upscales[i]), round(orig_shape[-2] * upscales[i]), upscale_method, "disabled")
|
||||
|
||||
if sigmas[i + 1] > 0:
|
||||
# Since the size of noise if changing, noise_sampler has to be redefined each time
|
||||
noise_sampler = default_noise_sampler(x, seed=seed)
|
||||
# Noise using the model's scheduler
|
||||
x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x)
|
||||
return x
|
||||
|
||||
|
||||
class SamplerLCMScalewise:
|
||||
upscale_methods = ["bicubic", "bilinear", "nearest-exact"]
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required":
|
||||
{
|
||||
"scale_ratio": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 4.0, "step": 0.25}),
|
||||
"scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}),
|
||||
"upscale_method": (s.upscale_methods,),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SAMPLER",)
|
||||
CATEGORY = "sampling/custom_sampling/samplers"
|
||||
|
||||
FUNCTION = "get_sampler"
|
||||
|
||||
def get_sampler(self, scale_ratio, scale_steps, upscale_method):
|
||||
if scale_steps < 0:
|
||||
scale_steps = None
|
||||
sampler = comfy.samplers.KSAMPLER(sample_lcm_scalewise, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
|
||||
return (sampler, )
|
||||
|
||||
|
||||
from comfy.k_diffusion.sampling import to_d
|
||||
import comfy.model_patcher
|
||||
@ -103,6 +162,7 @@ class SamplerEulerCFGpp:
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"SamplerLCMUpscale": SamplerLCMUpscale,
|
||||
"SamplerLCMScalewise": SamplerLCMScalewise,
|
||||
"SamplerEulerCFGpp": SamplerEulerCFGpp,
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user