diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index c9f4c04d..5b8d8000 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -929,30 +929,6 @@ def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, n return x -# x0 = - -@torch.no_grad() -def sample_lcm_scalewise(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): - extra_args = {} if extra_args is None else extra_args - seed = extra_args.get("seed", None) - scales = extra_args.get("scales", None) - if scales: - assert len(scales) == len(sigmas) - 1, "Number of scales must be equal to number of sampling steps minus one." - noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler - s_in = x.new_ones([x.shape[0]]) - for i in trange(len(sigmas) - 1, disable=disable): - denoised = model(x, sigmas[i] * s_in, **extra_args) - if callback is not None: - callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) - - x = denoised - if sigmas[i + 1] > 0: - if scales: - # Interpolate to next scale - x = nn.functional.interpolate(x, size=scales[i + 1], mode='bicubic') - x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x) - return x - @torch.no_grad() def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): diff --git a/comfy_extras/nodes_advanced_samplers.py b/comfy_extras/nodes_advanced_samplers.py index 5fbb096f..9db4b23c 100644 --- a/comfy_extras/nodes_advanced_samplers.py +++ b/comfy_extras/nodes_advanced_samplers.py @@ -1,5 +1,6 @@ import comfy.samplers import comfy.utils +from comfy.k_diffusion.sampling import default_noise_sampler import torch import numpy as np from tqdm.auto import trange @@ -54,6 +55,64 @@ class SamplerLCMUpscale: scale_steps = None sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method}) return (sampler, ) + + +@torch.no_grad() +def sample_lcm_scalewise(model, x, sigmas, extra_args=None, callback=None, disable=None, total_upscale=2.0, upscale_method="bislerp", upscale_steps=None): + extra_args = {} if extra_args is None else extra_args + seed = extra_args.get("seed", None) + + if upscale_steps is None: + upscale_steps = max(len(sigmas) // 2 + 1, 2) + else: + upscale_steps += 1 + upscale_steps = min(upscale_steps, len(sigmas) + 1) + + upscales = np.linspace(1.0, total_upscale, upscale_steps)[1:] + + orig_shape = x.size() + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + + x = denoised + if i < len(upscales): + x = comfy.utils.common_upscale(x, round(orig_shape[-1] * upscales[i]), round(orig_shape[-2] * upscales[i]), upscale_method, "disabled") + + if sigmas[i + 1] > 0: + # Since the size of noise if changing, noise_sampler has to be redefined each time + noise_sampler = default_noise_sampler(x, seed=seed) + # Noise using the model's scheduler + x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x) + return x + + +class SamplerLCMScalewise: + upscale_methods = ["bicubic", "bilinear", "nearest-exact"] + + @classmethod + def INPUT_TYPES(s): + return { + "required": + { + "scale_ratio": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 4.0, "step": 0.25}), + "scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}), + "upscale_method": (s.upscale_methods,), + } + } + RETURN_TYPES = ("SAMPLER",) + CATEGORY = "sampling/custom_sampling/samplers" + + FUNCTION = "get_sampler" + + def get_sampler(self, scale_ratio, scale_steps, upscale_method): + if scale_steps < 0: + scale_steps = None + sampler = comfy.samplers.KSAMPLER(sample_lcm_scalewise, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method}) + return (sampler, ) + from comfy.k_diffusion.sampling import to_d import comfy.model_patcher @@ -103,6 +162,7 @@ class SamplerEulerCFGpp: NODE_CLASS_MAPPINGS = { "SamplerLCMUpscale": SamplerLCMUpscale, + "SamplerLCMScalewise": SamplerLCMScalewise, "SamplerEulerCFGpp": SamplerEulerCFGpp, }