Some categories for the nodes.

This commit is contained in:
comfyanonymous 2023-01-26 12:23:15 -05:00
parent c4b02059d0
commit 2a87f6630d

View File

@ -33,6 +33,8 @@ class CLIPTextEncode:
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, clip, text):
return ([[clip.encode(text), {}]], )
@ -43,6 +45,8 @@ class ConditioningCombine:
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "combine"
CATEGORY = "conditioning"
def combine(self, conditioning_1, conditioning_2):
return (conditioning_1 + conditioning_2, )
@ -59,6 +63,8 @@ class ConditioningSetArea:
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
c = copy.deepcopy(conditioning)
for t in c:
@ -78,6 +84,8 @@ class VAEDecode:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "latent"
def decode(self, vae, samples):
return (vae.decode(samples), )
@ -91,6 +99,8 @@ class VAEEncode:
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent"
def encode(self, vae, pixels):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
@ -110,6 +120,8 @@ class CheckpointLoader:
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
CATEGORY = "loaders"
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
config_path = os.path.join(self.config_dir, config_name)
ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
@ -124,6 +136,8 @@ class VAELoader:
RETURN_TYPES = ("VAE",)
FUNCTION = "load_vae"
CATEGORY = "loaders"
#TODO: scale factor?
def load_vae(self, vae_name):
vae_path = os.path.join(self.vae_dir, vae_name)
@ -142,6 +156,8 @@ class EmptyLatentImage:
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent"
def generate(self, width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (latent, )
@ -199,6 +215,8 @@ class KSampler:
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
model = model.to(self.device)
@ -250,6 +268,8 @@ class SaveImage:
OUTPUT_NODE = True
CATEGORY = "image"
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
def map_filename(filename):
prefix_len = len(filename_prefix)
@ -283,6 +303,8 @@ class LoadImage:
{"image": (os.listdir(s.input_dir), )},
}
CATEGORY = "image"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "load_image"
def load_image(self, image):