diff --git a/nodes.py b/nodes.py index 11a78112..cb69e1a8 100644 --- a/nodes.py +++ b/nodes.py @@ -33,6 +33,8 @@ class CLIPTextEncode: RETURN_TYPES = ("CONDITIONING",) FUNCTION = "encode" + CATEGORY = "conditioning" + def encode(self, clip, text): return ([[clip.encode(text), {}]], ) @@ -43,6 +45,8 @@ class ConditioningCombine: RETURN_TYPES = ("CONDITIONING",) FUNCTION = "combine" + CATEGORY = "conditioning" + def combine(self, conditioning_1, conditioning_2): return (conditioning_1 + conditioning_2, ) @@ -59,6 +63,8 @@ class ConditioningSetArea: RETURN_TYPES = ("CONDITIONING",) FUNCTION = "append" + CATEGORY = "conditioning" + def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0): c = copy.deepcopy(conditioning) for t in c: @@ -78,6 +84,8 @@ class VAEDecode: RETURN_TYPES = ("IMAGE",) FUNCTION = "decode" + CATEGORY = "latent" + def decode(self, vae, samples): return (vae.decode(samples), ) @@ -91,6 +99,8 @@ class VAEEncode: RETURN_TYPES = ("LATENT",) FUNCTION = "encode" + CATEGORY = "latent" + def encode(self, vae, pixels): x = (pixels.shape[1] // 64) * 64 y = (pixels.shape[2] // 64) * 64 @@ -110,6 +120,8 @@ class CheckpointLoader: RETURN_TYPES = ("MODEL", "CLIP", "VAE") FUNCTION = "load_checkpoint" + CATEGORY = "loaders" + def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True): config_path = os.path.join(self.config_dir, config_name) ckpt_path = os.path.join(self.ckpt_dir, ckpt_name) @@ -124,6 +136,8 @@ class VAELoader: RETURN_TYPES = ("VAE",) FUNCTION = "load_vae" + CATEGORY = "loaders" + #TODO: scale factor? def load_vae(self, vae_name): vae_path = os.path.join(self.vae_dir, vae_name) @@ -142,6 +156,8 @@ class EmptyLatentImage: RETURN_TYPES = ("LATENT",) FUNCTION = "generate" + CATEGORY = "latent" + def generate(self, width, height, batch_size=1): latent = torch.zeros([batch_size, 4, height // 8, width // 8]) return (latent, ) @@ -199,6 +215,8 @@ class KSampler: RETURN_TYPES = ("LATENT",) FUNCTION = "sample" + CATEGORY = "sampling" + def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0): noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu") model = model.to(self.device) @@ -250,6 +268,8 @@ class SaveImage: OUTPUT_NODE = True + CATEGORY = "image" + def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): def map_filename(filename): prefix_len = len(filename_prefix) @@ -283,6 +303,8 @@ class LoadImage: {"image": (os.listdir(s.input_dir), )}, } + CATEGORY = "image" + RETURN_TYPES = ("IMAGE",) FUNCTION = "load_image" def load_image(self, image):