mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-22 07:27:18 +08:00
update model_base.py
This commit is contained in:
parent
bf339e8265
commit
2378c63ba9
@ -993,7 +993,8 @@ class WAN21(BaseModel):
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
noise = kwargs.get("noise", None)
|
||||
if self.diffusion_model.patch_embedding.weight.shape[1] == noise.shape[1]:
|
||||
extra_channels = self.diffusion_model.patch_embedding.weight.shape[1] - noise.shape[1]
|
||||
if extra_channels == 0:
|
||||
return None
|
||||
|
||||
image = kwargs.get("concat_latent_image", None)
|
||||
@ -1001,23 +1002,30 @@ class WAN21(BaseModel):
|
||||
|
||||
if image is None:
|
||||
image = torch.zeros_like(noise)
|
||||
shape_image = list(noise.shape)
|
||||
shape_image[1] = extra_channels
|
||||
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
|
||||
else:
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
for i in range(0, image.shape[1], 16):
|
||||
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
image = self.process_latent_in(image)
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
if not self.image_to_video:
|
||||
if not self.image_to_video or extra_channels == image.shape[1]:
|
||||
return image
|
||||
|
||||
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if mask is None:
|
||||
mask = torch.zeros_like(noise)[:, :4]
|
||||
else:
|
||||
mask = 1.0 - torch.mean(mask, dim=1, keepdim=True)
|
||||
if mask.shape[1] != 4:
|
||||
mask = torch.mean(mask, dim=1, keepdim=True)
|
||||
mask = 1.0 - mask
|
||||
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
if mask.shape[-3] < noise.shape[-3]:
|
||||
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
|
||||
mask = mask.repeat(1, 4, 1, 1, 1)
|
||||
if mask.shape[1] == 1:
|
||||
mask = mask.repeat(1, 4, 1, 1, 1)
|
||||
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
||||
|
||||
return torch.cat((mask, image), dim=1)
|
||||
|
Loading…
x
Reference in New Issue
Block a user