diff --git a/comfy/model_base.py b/comfy/model_base.py index 13349f71..9d73fa46 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -993,7 +993,8 @@ class WAN21(BaseModel): def concat_cond(self, **kwargs): noise = kwargs.get("noise", None) - if self.diffusion_model.patch_embedding.weight.shape[1] == noise.shape[1]: + extra_channels = self.diffusion_model.patch_embedding.weight.shape[1] - noise.shape[1] + if extra_channels == 0: return None image = kwargs.get("concat_latent_image", None) @@ -1001,23 +1002,30 @@ class WAN21(BaseModel): if image is None: image = torch.zeros_like(noise) + shape_image = list(noise.shape) + shape_image[1] = extra_channels + image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device) + else: + image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + for i in range(0, image.shape[1], 16): + image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16]) + image = utils.resize_to_batch_size(image, noise.shape[0]) - image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") - image = self.process_latent_in(image) - image = utils.resize_to_batch_size(image, noise.shape[0]) - - if not self.image_to_video: + if not self.image_to_video or extra_channels == image.shape[1]: return image mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) if mask is None: mask = torch.zeros_like(noise)[:, :4] else: - mask = 1.0 - torch.mean(mask, dim=1, keepdim=True) + if mask.shape[1] != 4: + mask = torch.mean(mask, dim=1, keepdim=True) + mask = 1.0 - mask mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") if mask.shape[-3] < noise.shape[-3]: mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0) - mask = mask.repeat(1, 4, 1, 1, 1) + if mask.shape[1] == 1: + mask = mask.repeat(1, 4, 1, 1, 1) mask = utils.resize_to_batch_size(mask, noise.shape[0]) return torch.cat((mask, image), dim=1)