2024-08-08 07:27:37 +00:00
|
|
|
"""
|
|
|
|
This file is part of ComfyUI.
|
|
|
|
Copyright (C) 2024 Comfy
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
"""
|
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Optional, Callable
|
2023-08-28 18:49:18 +00:00
|
|
|
import torch
|
|
|
|
import copy
|
|
|
|
import inspect
|
2024-03-10 15:37:08 +00:00
|
|
|
import logging
|
2024-03-20 05:29:26 +00:00
|
|
|
import uuid
|
2024-08-08 07:27:37 +00:00
|
|
|
import collections
|
2024-08-17 18:07:19 +00:00
|
|
|
import math
|
2023-08-28 18:49:18 +00:00
|
|
|
|
|
|
|
import comfy.utils
|
2024-08-17 18:07:19 +00:00
|
|
|
import comfy.float
|
2023-09-20 21:52:41 +00:00
|
|
|
import comfy.model_management
|
2024-08-22 21:12:00 +00:00
|
|
|
import comfy.lora
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
import comfy.hooks
|
|
|
|
import comfy.patcher_extension
|
|
|
|
from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection
|
2024-09-12 07:56:52 +00:00
|
|
|
from comfy.comfy_types import UnetWrapperFunction
|
2024-05-22 06:07:27 +00:00
|
|
|
|
2024-08-26 19:12:06 +00:00
|
|
|
def string_to_seed(data):
|
|
|
|
crc = 0xFFFFFFFF
|
|
|
|
for byte in data:
|
|
|
|
if isinstance(byte, str):
|
|
|
|
byte = ord(byte)
|
|
|
|
crc ^= byte
|
|
|
|
for _ in range(8):
|
|
|
|
if crc & 1:
|
|
|
|
crc = (crc >> 1) ^ 0xEDB88320
|
|
|
|
else:
|
|
|
|
crc >>= 1
|
|
|
|
return crc ^ 0xFFFFFFFF
|
2023-08-28 18:49:18 +00:00
|
|
|
|
2024-04-15 03:34:25 +00:00
|
|
|
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
|
|
|
|
to = model_options["transformer_options"].copy()
|
|
|
|
|
|
|
|
if "patches_replace" not in to:
|
|
|
|
to["patches_replace"] = {}
|
|
|
|
else:
|
|
|
|
to["patches_replace"] = to["patches_replace"].copy()
|
|
|
|
|
|
|
|
if name not in to["patches_replace"]:
|
|
|
|
to["patches_replace"][name] = {}
|
|
|
|
else:
|
|
|
|
to["patches_replace"][name] = to["patches_replace"][name].copy()
|
|
|
|
|
|
|
|
if transformer_index is not None:
|
|
|
|
block = (block_name, number, transformer_index)
|
|
|
|
else:
|
|
|
|
block = (block_name, number)
|
|
|
|
to["patches_replace"][name][block] = patch
|
|
|
|
model_options["transformer_options"] = to
|
|
|
|
return model_options
|
2024-03-25 22:09:23 +00:00
|
|
|
|
2024-06-23 17:21:18 +00:00
|
|
|
def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False):
|
|
|
|
model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
|
|
|
|
if disable_cfg1_optimization:
|
|
|
|
model_options["disable_cfg1_optimization"] = True
|
|
|
|
return model_options
|
|
|
|
|
2024-07-09 20:20:49 +00:00
|
|
|
def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_cfg1_optimization=False):
|
|
|
|
model_options["sampler_pre_cfg_function"] = model_options.get("sampler_pre_cfg_function", []) + [pre_cfg_function]
|
|
|
|
if disable_cfg1_optimization:
|
|
|
|
model_options["disable_cfg1_optimization"] = True
|
|
|
|
return model_options
|
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
def create_model_options_clone(orig_model_options: dict):
|
|
|
|
return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
|
|
|
|
|
|
|
|
def create_hook_patches_clone(orig_hook_patches):
|
|
|
|
new_hook_patches = {}
|
|
|
|
for hook_ref in orig_hook_patches:
|
|
|
|
new_hook_patches[hook_ref] = {}
|
|
|
|
for k in orig_hook_patches[hook_ref]:
|
|
|
|
new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:]
|
|
|
|
return new_hook_patches
|
|
|
|
|
2024-08-08 07:27:37 +00:00
|
|
|
def wipe_lowvram_weight(m):
|
|
|
|
if hasattr(m, "prev_comfy_cast_weights"):
|
|
|
|
m.comfy_cast_weights = m.prev_comfy_cast_weights
|
|
|
|
del m.prev_comfy_cast_weights
|
|
|
|
m.weight_function = None
|
|
|
|
m.bias_function = None
|
|
|
|
|
|
|
|
class LowVramPatch:
|
2024-08-22 21:05:12 +00:00
|
|
|
def __init__(self, key, patches):
|
2024-08-08 07:27:37 +00:00
|
|
|
self.key = key
|
2024-08-22 21:05:12 +00:00
|
|
|
self.patches = patches
|
2024-08-08 07:27:37 +00:00
|
|
|
def __call__(self, weight):
|
2024-09-28 18:42:14 +00:00
|
|
|
intermediate_dtype = weight.dtype
|
|
|
|
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
|
|
|
|
intermediate_dtype = torch.float32
|
|
|
|
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
|
2024-08-08 07:27:37 +00:00
|
|
|
|
2024-09-28 18:42:14 +00:00
|
|
|
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
|
2024-10-20 10:24:31 +00:00
|
|
|
|
|
|
|
def get_key_weight(model, key):
|
|
|
|
set_func = None
|
|
|
|
convert_func = None
|
|
|
|
op_keys = key.rsplit('.', 1)
|
|
|
|
if len(op_keys) < 2:
|
|
|
|
weight = comfy.utils.get_attr(model, key)
|
|
|
|
else:
|
|
|
|
op = comfy.utils.get_attr(model, op_keys[0])
|
|
|
|
try:
|
|
|
|
set_func = getattr(op, "set_{}".format(op_keys[1]))
|
|
|
|
except AttributeError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
try:
|
|
|
|
convert_func = getattr(op, "convert_{}".format(op_keys[1]))
|
|
|
|
except AttributeError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
weight = getattr(op, op_keys[1])
|
|
|
|
if convert_func is not None:
|
|
|
|
weight = comfy.utils.get_attr(model, key)
|
|
|
|
|
|
|
|
return weight, set_func, convert_func
|
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
class AutoPatcherEjector:
|
|
|
|
def __init__(self, model: 'ModelPatcher', skip_and_inject_on_exit_only=False):
|
|
|
|
self.model = model
|
|
|
|
self.was_injected = False
|
|
|
|
self.prev_skip_injection = False
|
|
|
|
self.skip_and_inject_on_exit_only = skip_and_inject_on_exit_only
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
self.was_injected = False
|
|
|
|
self.prev_skip_injection = self.model.skip_injection
|
|
|
|
if self.skip_and_inject_on_exit_only:
|
|
|
|
self.model.skip_injection = True
|
|
|
|
if self.model.is_injected:
|
|
|
|
self.model.eject_model()
|
|
|
|
self.was_injected = True
|
|
|
|
|
|
|
|
def __exit__(self, *args):
|
|
|
|
if self.skip_and_inject_on_exit_only:
|
|
|
|
self.model.skip_injection = self.prev_skip_injection
|
|
|
|
self.model.inject_model()
|
|
|
|
if self.was_injected and not self.model.skip_injection:
|
|
|
|
self.model.inject_model()
|
|
|
|
self.model.skip_injection = self.prev_skip_injection
|
|
|
|
|
|
|
|
class MemoryCounter:
|
|
|
|
def __init__(self, initial: int, minimum=0):
|
|
|
|
self.value = initial
|
|
|
|
self.minimum = minimum
|
|
|
|
# TODO: add a safe limit besides 0
|
|
|
|
|
|
|
|
def use(self, weight: torch.Tensor):
|
|
|
|
weight_size = weight.nelement() * weight.element_size()
|
|
|
|
if self.is_useable(weight_size):
|
|
|
|
self.decrement(weight_size)
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def is_useable(self, used: int):
|
|
|
|
return self.value - used > self.minimum
|
|
|
|
|
|
|
|
def decrement(self, used: int):
|
|
|
|
self.value -= used
|
|
|
|
|
2023-08-28 18:49:18 +00:00
|
|
|
class ModelPatcher:
|
2024-08-06 17:27:48 +00:00
|
|
|
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
|
2023-08-28 18:49:18 +00:00
|
|
|
self.size = size
|
|
|
|
self.model = model
|
2024-08-06 17:27:48 +00:00
|
|
|
if not hasattr(self.model, 'device'):
|
2024-08-10 19:29:36 +00:00
|
|
|
logging.debug("Model doesn't have a device attribute.")
|
2024-08-06 17:27:48 +00:00
|
|
|
self.model.device = offload_device
|
|
|
|
elif self.model.device is None:
|
|
|
|
self.model.device = offload_device
|
|
|
|
|
2023-08-28 18:49:18 +00:00
|
|
|
self.patches = {}
|
|
|
|
self.backup = {}
|
2023-11-07 08:28:53 +00:00
|
|
|
self.object_patches = {}
|
|
|
|
self.object_patches_backup = {}
|
2023-08-28 18:49:18 +00:00
|
|
|
self.model_options = {"transformer_options":{}}
|
|
|
|
self.model_size()
|
|
|
|
self.load_device = load_device
|
|
|
|
self.offload_device = offload_device
|
2023-11-11 06:03:39 +00:00
|
|
|
self.weight_inplace_update = weight_inplace_update
|
2024-03-20 05:29:26 +00:00
|
|
|
self.patches_uuid = uuid.uuid4()
|
2024-12-02 19:39:34 +00:00
|
|
|
self.parent = None
|
2023-11-11 06:03:39 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
self.attachments: dict[str] = {}
|
|
|
|
self.additional_models: dict[str, list[ModelPatcher]] = {}
|
|
|
|
self.callbacks: dict[str, dict[str, list[Callable]]] = CallbacksMP.init_callbacks()
|
|
|
|
self.wrappers: dict[str, dict[str, list[Callable]]] = WrappersMP.init_wrappers()
|
|
|
|
|
|
|
|
self.is_injected = False
|
|
|
|
self.skip_injection = False
|
|
|
|
self.injections: dict[str, list[PatcherInjection]] = {}
|
|
|
|
|
|
|
|
self.hook_patches: dict[comfy.hooks._HookRef] = {}
|
|
|
|
self.hook_patches_backup: dict[comfy.hooks._HookRef] = {}
|
|
|
|
self.hook_backup: dict[str, tuple[torch.Tensor, torch.device]] = {}
|
|
|
|
self.cached_hook_patches: dict[comfy.hooks.HookGroup, dict[str, torch.Tensor]] = {}
|
|
|
|
self.current_hooks: Optional[comfy.hooks.HookGroup] = None
|
|
|
|
self.forced_hooks: Optional[comfy.hooks.HookGroup] = None # NOTE: only used for CLIP at this time
|
|
|
|
self.is_clip = False
|
|
|
|
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
|
|
|
|
|
2024-08-08 07:27:37 +00:00
|
|
|
if not hasattr(self.model, 'model_loaded_weight_memory'):
|
|
|
|
self.model.model_loaded_weight_memory = 0
|
|
|
|
|
|
|
|
if not hasattr(self.model, 'lowvram_patch_counter'):
|
|
|
|
self.model.lowvram_patch_counter = 0
|
|
|
|
|
|
|
|
if not hasattr(self.model, 'model_lowvram'):
|
|
|
|
self.model.model_lowvram = False
|
|
|
|
|
2024-12-02 19:39:34 +00:00
|
|
|
if not hasattr(self.model, 'current_weight_patches_uuid'):
|
|
|
|
self.model.current_weight_patches_uuid = None
|
|
|
|
|
2023-08-28 18:49:18 +00:00
|
|
|
def model_size(self):
|
|
|
|
if self.size > 0:
|
|
|
|
return self.size
|
2023-12-29 02:46:20 +00:00
|
|
|
self.size = comfy.model_management.module_size(self.model)
|
|
|
|
return self.size
|
2023-08-28 18:49:18 +00:00
|
|
|
|
2024-08-08 07:27:37 +00:00
|
|
|
def loaded_size(self):
|
|
|
|
return self.model.model_loaded_weight_memory
|
|
|
|
|
|
|
|
def lowvram_patch_counter(self):
|
|
|
|
return self.model.lowvram_patch_counter
|
|
|
|
|
2023-08-28 18:49:18 +00:00
|
|
|
def clone(self):
|
2024-12-03 18:57:18 +00:00
|
|
|
n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
|
2023-08-28 18:49:18 +00:00
|
|
|
n.patches = {}
|
|
|
|
for k in self.patches:
|
|
|
|
n.patches[k] = self.patches[k][:]
|
2024-03-20 05:29:26 +00:00
|
|
|
n.patches_uuid = self.patches_uuid
|
2023-08-28 18:49:18 +00:00
|
|
|
|
2023-11-08 03:15:15 +00:00
|
|
|
n.object_patches = self.object_patches.copy()
|
2023-08-28 18:49:18 +00:00
|
|
|
n.model_options = copy.deepcopy(self.model_options)
|
2024-03-20 05:29:26 +00:00
|
|
|
n.backup = self.backup
|
|
|
|
n.object_patches_backup = self.object_patches_backup
|
2024-12-02 19:39:34 +00:00
|
|
|
n.parent = self
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
|
|
|
|
# attachments
|
|
|
|
n.attachments = {}
|
|
|
|
for k in self.attachments:
|
|
|
|
if hasattr(self.attachments[k], "on_model_patcher_clone"):
|
|
|
|
n.attachments[k] = self.attachments[k].on_model_patcher_clone()
|
|
|
|
else:
|
|
|
|
n.attachments[k] = self.attachments[k]
|
|
|
|
# additional models
|
|
|
|
for k, c in self.additional_models.items():
|
|
|
|
n.additional_models[k] = [x.clone() for x in c]
|
|
|
|
# callbacks
|
|
|
|
for k, c in self.callbacks.items():
|
|
|
|
n.callbacks[k] = {}
|
|
|
|
for k1, c1 in c.items():
|
|
|
|
n.callbacks[k][k1] = c1.copy()
|
|
|
|
# sample wrappers
|
|
|
|
for k, w in self.wrappers.items():
|
|
|
|
n.wrappers[k] = {}
|
|
|
|
for k1, w1 in w.items():
|
|
|
|
n.wrappers[k][k1] = w1.copy()
|
|
|
|
# injection
|
|
|
|
n.is_injected = self.is_injected
|
|
|
|
n.skip_injection = self.skip_injection
|
|
|
|
for k, i in self.injections.items():
|
|
|
|
n.injections[k] = i.copy()
|
|
|
|
# hooks
|
|
|
|
n.hook_patches = create_hook_patches_clone(self.hook_patches)
|
|
|
|
n.hook_patches_backup = create_hook_patches_clone(self.hook_patches_backup)
|
|
|
|
for group in self.cached_hook_patches:
|
|
|
|
n.cached_hook_patches[group] = {}
|
|
|
|
for k in self.cached_hook_patches[group]:
|
|
|
|
n.cached_hook_patches[group][k] = self.cached_hook_patches[group][k]
|
|
|
|
n.hook_backup = self.hook_backup
|
|
|
|
n.current_hooks = self.current_hooks.clone() if self.current_hooks else self.current_hooks
|
|
|
|
n.forced_hooks = self.forced_hooks.clone() if self.forced_hooks else self.forced_hooks
|
|
|
|
n.is_clip = self.is_clip
|
|
|
|
n.hook_mode = self.hook_mode
|
|
|
|
|
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE):
|
|
|
|
callback(self, n)
|
2023-08-28 18:49:18 +00:00
|
|
|
return n
|
|
|
|
|
|
|
|
def is_clone(self, other):
|
|
|
|
if hasattr(other, 'model') and self.model is other.model:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
def clone_has_same_weights(self, clone: 'ModelPatcher'):
|
2024-03-20 05:29:26 +00:00
|
|
|
if not self.is_clone(clone):
|
|
|
|
return False
|
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
if self.current_hooks != clone.current_hooks:
|
|
|
|
return False
|
|
|
|
if self.forced_hooks != clone.forced_hooks:
|
|
|
|
return False
|
|
|
|
if self.hook_patches.keys() != clone.hook_patches.keys():
|
|
|
|
return False
|
|
|
|
if self.attachments.keys() != clone.attachments.keys():
|
|
|
|
return False
|
|
|
|
if self.additional_models.keys() != clone.additional_models.keys():
|
|
|
|
return False
|
|
|
|
for key in self.callbacks:
|
|
|
|
if len(self.callbacks[key]) != len(clone.callbacks[key]):
|
|
|
|
return False
|
|
|
|
for key in self.wrappers:
|
|
|
|
if len(self.wrappers[key]) != len(clone.wrappers[key]):
|
|
|
|
return False
|
|
|
|
if self.injections.keys() != clone.injections.keys():
|
|
|
|
return False
|
|
|
|
|
2024-03-20 05:29:26 +00:00
|
|
|
if len(self.patches) == 0 and len(clone.patches) == 0:
|
|
|
|
return True
|
|
|
|
|
|
|
|
if self.patches_uuid == clone.patches_uuid:
|
|
|
|
if len(self.patches) != len(clone.patches):
|
|
|
|
logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
|
|
|
|
else:
|
|
|
|
return True
|
|
|
|
|
2023-11-12 09:02:16 +00:00
|
|
|
def memory_required(self, input_shape):
|
|
|
|
return self.model.memory_required(input_shape=input_shape)
|
|
|
|
|
2023-12-18 22:03:32 +00:00
|
|
|
def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
|
2023-08-28 18:49:18 +00:00
|
|
|
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
|
|
|
|
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
|
|
|
|
else:
|
|
|
|
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
2023-12-18 22:03:32 +00:00
|
|
|
if disable_cfg1_optimization:
|
|
|
|
self.model_options["disable_cfg1_optimization"] = True
|
2023-08-28 18:49:18 +00:00
|
|
|
|
2023-12-18 22:03:32 +00:00
|
|
|
def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
|
2024-06-23 17:21:18 +00:00
|
|
|
self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization)
|
2023-12-13 21:10:03 +00:00
|
|
|
|
2024-07-09 20:20:49 +00:00
|
|
|
def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False):
|
|
|
|
self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization)
|
|
|
|
|
2024-05-22 06:07:27 +00:00
|
|
|
def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
|
2023-08-28 18:49:18 +00:00
|
|
|
self.model_options["model_function_wrapper"] = unet_wrapper_function
|
|
|
|
|
2024-03-03 20:11:13 +00:00
|
|
|
def set_model_denoise_mask_function(self, denoise_mask_function):
|
|
|
|
self.model_options["denoise_mask_function"] = denoise_mask_function
|
|
|
|
|
2023-08-28 18:49:18 +00:00
|
|
|
def set_model_patch(self, patch, name):
|
|
|
|
to = self.model_options["transformer_options"]
|
|
|
|
if "patches" not in to:
|
|
|
|
to["patches"] = {}
|
|
|
|
to["patches"][name] = to["patches"].get(name, []) + [patch]
|
|
|
|
|
2023-12-13 21:10:03 +00:00
|
|
|
def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
|
2024-04-15 03:34:25 +00:00
|
|
|
self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index)
|
2023-08-28 18:49:18 +00:00
|
|
|
|
|
|
|
def set_model_attn1_patch(self, patch):
|
|
|
|
self.set_model_patch(patch, "attn1_patch")
|
|
|
|
|
|
|
|
def set_model_attn2_patch(self, patch):
|
|
|
|
self.set_model_patch(patch, "attn2_patch")
|
|
|
|
|
2023-12-13 21:10:03 +00:00
|
|
|
def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
|
|
|
|
self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
|
2023-08-28 18:49:18 +00:00
|
|
|
|
2023-12-13 21:10:03 +00:00
|
|
|
def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
|
|
|
|
self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
|
2023-08-28 18:49:18 +00:00
|
|
|
|
|
|
|
def set_model_attn1_output_patch(self, patch):
|
|
|
|
self.set_model_patch(patch, "attn1_output_patch")
|
|
|
|
|
|
|
|
def set_model_attn2_output_patch(self, patch):
|
|
|
|
self.set_model_patch(patch, "attn2_output_patch")
|
|
|
|
|
2023-11-14 05:08:12 +00:00
|
|
|
def set_model_input_block_patch(self, patch):
|
|
|
|
self.set_model_patch(patch, "input_block_patch")
|
|
|
|
|
2023-11-16 20:26:28 +00:00
|
|
|
def set_model_input_block_patch_after_skip(self, patch):
|
|
|
|
self.set_model_patch(patch, "input_block_patch_after_skip")
|
|
|
|
|
2023-09-23 00:26:47 +00:00
|
|
|
def set_model_output_block_patch(self, patch):
|
|
|
|
self.set_model_patch(patch, "output_block_patch")
|
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
def set_model_emb_patch(self, patch):
|
|
|
|
self.set_model_patch(patch, "emb_patch")
|
|
|
|
|
|
|
|
def set_model_forward_timestep_embed_patch(self, patch):
|
|
|
|
self.set_model_patch(patch, "forward_timestep_embed_patch")
|
|
|
|
|
2023-11-07 08:28:53 +00:00
|
|
|
def add_object_patch(self, name, obj):
|
|
|
|
self.object_patches[name] = obj
|
|
|
|
|
2024-04-05 02:08:49 +00:00
|
|
|
def get_model_object(self, name):
|
|
|
|
if name in self.object_patches:
|
|
|
|
return self.object_patches[name]
|
|
|
|
else:
|
2024-04-05 03:01:02 +00:00
|
|
|
if name in self.object_patches_backup:
|
|
|
|
return self.object_patches_backup[name]
|
|
|
|
else:
|
|
|
|
return comfy.utils.get_attr(self.model, name)
|
2024-04-05 02:08:49 +00:00
|
|
|
|
2023-08-28 18:49:18 +00:00
|
|
|
def model_patches_to(self, device):
|
|
|
|
to = self.model_options["transformer_options"]
|
|
|
|
if "patches" in to:
|
|
|
|
patches = to["patches"]
|
|
|
|
for name in patches:
|
|
|
|
patch_list = patches[name]
|
|
|
|
for i in range(len(patch_list)):
|
|
|
|
if hasattr(patch_list[i], "to"):
|
|
|
|
patch_list[i] = patch_list[i].to(device)
|
|
|
|
if "patches_replace" in to:
|
|
|
|
patches = to["patches_replace"]
|
|
|
|
for name in patches:
|
|
|
|
patch_list = patches[name]
|
|
|
|
for k in patch_list:
|
|
|
|
if hasattr(patch_list[k], "to"):
|
|
|
|
patch_list[k] = patch_list[k].to(device)
|
2023-11-05 09:11:44 +00:00
|
|
|
if "model_function_wrapper" in self.model_options:
|
|
|
|
wrap_func = self.model_options["model_function_wrapper"]
|
2023-10-11 05:34:38 +00:00
|
|
|
if hasattr(wrap_func, "to"):
|
2023-11-05 09:11:44 +00:00
|
|
|
self.model_options["model_function_wrapper"] = wrap_func.to(device)
|
2023-08-28 18:49:18 +00:00
|
|
|
|
|
|
|
def model_dtype(self):
|
|
|
|
if hasattr(self.model, "get_dtype"):
|
|
|
|
return self.model.get_dtype()
|
|
|
|
|
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
with self.use_ejected():
|
|
|
|
p = set()
|
|
|
|
model_sd = self.model.state_dict()
|
|
|
|
for k in patches:
|
|
|
|
offset = None
|
|
|
|
function = None
|
|
|
|
if isinstance(k, str):
|
|
|
|
key = k
|
|
|
|
else:
|
|
|
|
offset = k[1]
|
|
|
|
key = k[0]
|
|
|
|
if len(k) > 2:
|
|
|
|
function = k[2]
|
2024-06-13 21:12:50 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
if key in model_sd:
|
|
|
|
p.add(k)
|
|
|
|
current_patches = self.patches.get(key, [])
|
|
|
|
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
|
|
|
|
self.patches[key] = current_patches
|
2023-08-28 18:49:18 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
self.patches_uuid = uuid.uuid4()
|
|
|
|
return list(p)
|
2023-08-28 18:49:18 +00:00
|
|
|
|
|
|
|
def get_key_patches(self, filter_prefix=None):
|
|
|
|
model_sd = self.model_state_dict()
|
|
|
|
p = {}
|
|
|
|
for k in model_sd:
|
|
|
|
if filter_prefix is not None:
|
|
|
|
if not k.startswith(filter_prefix):
|
|
|
|
continue
|
2024-09-17 05:57:59 +00:00
|
|
|
bk = self.backup.get(k, None)
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
hbk = self.hook_backup.get(k, None)
|
2024-10-20 10:24:31 +00:00
|
|
|
weight, set_func, convert_func = get_key_weight(self.model, k)
|
2024-09-17 05:57:59 +00:00
|
|
|
if bk is not None:
|
|
|
|
weight = bk.weight
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
if hbk is not None:
|
|
|
|
weight = hbk[0]
|
2024-10-20 10:24:31 +00:00
|
|
|
if convert_func is None:
|
|
|
|
convert_func = lambda a, **kwargs: a
|
|
|
|
|
2023-08-28 18:49:18 +00:00
|
|
|
if k in self.patches:
|
2024-10-20 10:24:31 +00:00
|
|
|
p[k] = [(weight, convert_func)] + self.patches[k]
|
2023-08-28 18:49:18 +00:00
|
|
|
else:
|
2024-10-20 10:24:31 +00:00
|
|
|
p[k] = [(weight, convert_func)]
|
2023-08-28 18:49:18 +00:00
|
|
|
return p
|
|
|
|
|
|
|
|
def model_state_dict(self, filter_prefix=None):
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
with self.use_ejected():
|
|
|
|
sd = self.model.state_dict()
|
|
|
|
keys = list(sd.keys())
|
|
|
|
if filter_prefix is not None:
|
|
|
|
for k in keys:
|
|
|
|
if not k.startswith(filter_prefix):
|
|
|
|
sd.pop(k)
|
|
|
|
return sd
|
2023-08-28 18:49:18 +00:00
|
|
|
|
2024-08-08 07:27:37 +00:00
|
|
|
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
|
2024-03-13 23:04:41 +00:00
|
|
|
if key not in self.patches:
|
|
|
|
return
|
|
|
|
|
2024-10-20 10:24:31 +00:00
|
|
|
weight, set_func, convert_func = get_key_weight(self.model, key)
|
2024-08-08 07:27:37 +00:00
|
|
|
inplace_update = self.weight_inplace_update or inplace_update
|
2024-03-13 23:04:41 +00:00
|
|
|
|
|
|
|
if key not in self.backup:
|
2024-08-08 07:27:37 +00:00
|
|
|
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
|
2024-03-13 23:04:41 +00:00
|
|
|
|
|
|
|
if device_to is not None:
|
|
|
|
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
|
|
|
else:
|
|
|
|
temp_weight = weight.to(torch.float32, copy=True)
|
2024-10-20 03:47:42 +00:00
|
|
|
if convert_func is not None:
|
2024-10-20 10:24:31 +00:00
|
|
|
temp_weight = convert_func(temp_weight, inplace=True)
|
2024-10-20 03:47:42 +00:00
|
|
|
|
2024-08-22 21:12:00 +00:00
|
|
|
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
|
2024-10-20 03:47:42 +00:00
|
|
|
if set_func is None:
|
|
|
|
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
|
|
|
|
if inplace_update:
|
|
|
|
comfy.utils.copy_to_param(self.model, key, out_weight)
|
|
|
|
else:
|
|
|
|
comfy.utils.set_attr_param(self.model, key, out_weight)
|
2024-03-13 23:04:41 +00:00
|
|
|
else:
|
2024-10-20 03:47:42 +00:00
|
|
|
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
|
2024-03-13 23:04:41 +00:00
|
|
|
|
2024-11-23 01:59:15 +00:00
|
|
|
def _load_list(self):
|
2024-08-26 06:07:32 +00:00
|
|
|
loading = []
|
2024-03-13 23:04:41 +00:00
|
|
|
for n, m in self.model.named_modules():
|
2024-11-21 12:19:17 +00:00
|
|
|
params = []
|
2024-11-22 21:40:04 +00:00
|
|
|
skip = False
|
2024-11-21 12:19:17 +00:00
|
|
|
for name, param in m.named_parameters(recurse=False):
|
|
|
|
params.append(name)
|
2024-11-22 21:40:04 +00:00
|
|
|
for name, param in m.named_parameters(recurse=True):
|
|
|
|
if name not in params:
|
|
|
|
skip = True # skip random weights in non leaf modules
|
|
|
|
break
|
|
|
|
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
|
2024-11-21 12:19:17 +00:00
|
|
|
loading.append((comfy.model_management.module_size(m), n, m, params))
|
2024-11-23 01:59:15 +00:00
|
|
|
return loading
|
|
|
|
|
|
|
|
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
with self.use_ejected():
|
|
|
|
self.unpatch_hooks()
|
|
|
|
mem_counter = 0
|
|
|
|
patch_counter = 0
|
|
|
|
lowvram_counter = 0
|
|
|
|
loading = self._load_list()
|
|
|
|
|
|
|
|
load_completely = []
|
|
|
|
loading.sort(reverse=True)
|
|
|
|
for x in loading:
|
|
|
|
n = x[1]
|
|
|
|
m = x[2]
|
|
|
|
params = x[3]
|
|
|
|
module_mem = x[0]
|
|
|
|
|
|
|
|
lowvram_weight = False
|
|
|
|
|
|
|
|
if not full_load and hasattr(m, "comfy_cast_weights"):
|
|
|
|
if mem_counter + module_mem >= lowvram_model_memory:
|
|
|
|
lowvram_weight = True
|
|
|
|
lowvram_counter += 1
|
|
|
|
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
|
|
|
|
continue
|
2024-03-13 23:04:41 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
weight_key = "{}.weight".format(n)
|
|
|
|
bias_key = "{}.bias".format(n)
|
2024-03-13 23:04:41 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
if lowvram_weight:
|
|
|
|
if weight_key in self.patches:
|
|
|
|
if force_patch_weights:
|
|
|
|
self.patch_weight_to_device(weight_key)
|
|
|
|
else:
|
|
|
|
m.weight_function = LowVramPatch(weight_key, self.patches)
|
|
|
|
patch_counter += 1
|
|
|
|
if bias_key in self.patches:
|
|
|
|
if force_patch_weights:
|
|
|
|
self.patch_weight_to_device(bias_key)
|
|
|
|
else:
|
|
|
|
m.bias_function = LowVramPatch(bias_key, self.patches)
|
|
|
|
patch_counter += 1
|
2024-03-13 23:04:41 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
|
|
|
m.comfy_cast_weights = True
|
|
|
|
else:
|
|
|
|
if hasattr(m, "comfy_cast_weights"):
|
|
|
|
if m.comfy_cast_weights:
|
|
|
|
wipe_lowvram_weight(m)
|
|
|
|
|
|
|
|
if full_load or mem_counter + module_mem < lowvram_model_memory:
|
|
|
|
mem_counter += module_mem
|
|
|
|
load_completely.append((module_mem, n, m, params))
|
|
|
|
|
|
|
|
load_completely.sort(reverse=True)
|
|
|
|
for x in load_completely:
|
|
|
|
n = x[1]
|
|
|
|
m = x[2]
|
|
|
|
params = x[3]
|
|
|
|
if hasattr(m, "comfy_patched_weights"):
|
|
|
|
if m.comfy_patched_weights == True:
|
|
|
|
continue
|
2024-08-17 18:07:19 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
for param in params:
|
|
|
|
self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to)
|
2024-11-21 12:19:17 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
|
|
|
|
m.comfy_patched_weights = True
|
2024-08-17 18:07:19 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
for x in load_completely:
|
|
|
|
x[2].to(device_to)
|
2024-03-13 23:04:41 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
if lowvram_counter > 0:
|
|
|
|
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
|
|
|
|
self.model.model_lowvram = True
|
|
|
|
else:
|
|
|
|
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
|
|
|
self.model.model_lowvram = False
|
|
|
|
if full_load:
|
|
|
|
self.model.to(device_to)
|
|
|
|
mem_counter = self.model_size()
|
2024-08-19 19:24:07 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
self.model.lowvram_patch_counter += patch_counter
|
|
|
|
self.model.device = device_to
|
|
|
|
self.model.model_loaded_weight_memory = mem_counter
|
|
|
|
self.model.current_weight_patches_uuid = self.patches_uuid
|
2024-08-08 07:27:37 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD):
|
|
|
|
callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load)
|
2024-08-19 19:24:07 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
self.apply_hooks(self.forced_hooks, force_apply=True)
|
|
|
|
|
|
|
|
def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
|
|
|
|
with self.use_ejected():
|
|
|
|
for k in self.object_patches:
|
|
|
|
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
|
|
|
|
if k not in self.object_patches_backup:
|
|
|
|
self.object_patches_backup[k] = old
|
|
|
|
|
|
|
|
if lowvram_model_memory == 0:
|
|
|
|
full_load = True
|
|
|
|
else:
|
|
|
|
full_load = False
|
2024-08-08 07:27:37 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
if load_weights:
|
|
|
|
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
|
|
|
|
self.inject_model()
|
2024-03-13 23:04:41 +00:00
|
|
|
return self.model
|
|
|
|
|
2024-03-20 05:29:26 +00:00
|
|
|
def unpatch_model(self, device_to=None, unpatch_weights=True):
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
self.eject_model()
|
2024-03-20 05:29:26 +00:00
|
|
|
if unpatch_weights:
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
self.unpatch_hooks()
|
2024-08-08 07:27:37 +00:00
|
|
|
if self.model.model_lowvram:
|
2024-03-20 05:29:26 +00:00
|
|
|
for m in self.model.modules():
|
2024-08-08 07:27:37 +00:00
|
|
|
wipe_lowvram_weight(m)
|
2024-03-13 23:04:41 +00:00
|
|
|
|
2024-08-08 07:27:37 +00:00
|
|
|
self.model.model_lowvram = False
|
|
|
|
self.model.lowvram_patch_counter = 0
|
2024-03-13 23:04:41 +00:00
|
|
|
|
2024-03-20 05:29:26 +00:00
|
|
|
keys = list(self.backup.keys())
|
2023-08-28 18:49:18 +00:00
|
|
|
|
2024-08-08 07:27:37 +00:00
|
|
|
for k in keys:
|
|
|
|
bk = self.backup[k]
|
|
|
|
if bk.inplace_update:
|
|
|
|
comfy.utils.copy_to_param(self.model, k, bk.weight)
|
|
|
|
else:
|
|
|
|
comfy.utils.set_attr_param(self.model, k, bk.weight)
|
2023-08-28 18:49:18 +00:00
|
|
|
|
2024-12-02 19:39:34 +00:00
|
|
|
self.model.current_weight_patches_uuid = None
|
2024-03-20 05:29:26 +00:00
|
|
|
self.backup.clear()
|
2023-08-28 18:49:18 +00:00
|
|
|
|
2024-03-20 05:29:26 +00:00
|
|
|
if device_to is not None:
|
|
|
|
self.model.to(device_to)
|
2024-08-06 17:27:48 +00:00
|
|
|
self.model.device = device_to
|
2024-08-08 07:27:37 +00:00
|
|
|
self.model.model_loaded_weight_memory = 0
|
2023-11-07 08:28:53 +00:00
|
|
|
|
2024-08-19 20:28:55 +00:00
|
|
|
for m in self.model.modules():
|
|
|
|
if hasattr(m, "comfy_patched_weights"):
|
|
|
|
del m.comfy_patched_weights
|
|
|
|
|
2023-11-07 08:28:53 +00:00
|
|
|
keys = list(self.object_patches_backup.keys())
|
|
|
|
for k in keys:
|
2024-03-02 16:43:27 +00:00
|
|
|
comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
|
2023-11-07 08:28:53 +00:00
|
|
|
|
2024-04-05 04:22:44 +00:00
|
|
|
self.object_patches_backup.clear()
|
2024-08-06 17:27:48 +00:00
|
|
|
|
2024-08-08 07:27:37 +00:00
|
|
|
def partially_unload(self, device_to, memory_to_free=0):
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
with self.use_ejected():
|
|
|
|
memory_freed = 0
|
|
|
|
patch_counter = 0
|
|
|
|
unload_list = self._load_list()
|
|
|
|
unload_list.sort()
|
|
|
|
for unload in unload_list:
|
|
|
|
if memory_to_free < memory_freed:
|
|
|
|
break
|
|
|
|
module_mem = unload[0]
|
|
|
|
n = unload[1]
|
|
|
|
m = unload[2]
|
|
|
|
params = unload[3]
|
|
|
|
|
|
|
|
lowvram_possible = hasattr(m, "comfy_cast_weights")
|
|
|
|
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
|
|
|
|
move_weight = True
|
|
|
|
for param in params:
|
|
|
|
key = "{}.{}".format(n, param)
|
|
|
|
bk = self.backup.get(key, None)
|
|
|
|
if bk is not None:
|
|
|
|
if not lowvram_possible:
|
|
|
|
move_weight = False
|
|
|
|
break
|
|
|
|
|
|
|
|
if bk.inplace_update:
|
|
|
|
comfy.utils.copy_to_param(self.model, key, bk.weight)
|
|
|
|
else:
|
|
|
|
comfy.utils.set_attr_param(self.model, key, bk.weight)
|
|
|
|
self.backup.pop(key)
|
|
|
|
|
|
|
|
weight_key = "{}.weight".format(n)
|
|
|
|
bias_key = "{}.bias".format(n)
|
|
|
|
if move_weight:
|
|
|
|
m.to(device_to)
|
|
|
|
if lowvram_possible:
|
|
|
|
if weight_key in self.patches:
|
|
|
|
m.weight_function = LowVramPatch(weight_key, self.patches)
|
|
|
|
patch_counter += 1
|
|
|
|
if bias_key in self.patches:
|
|
|
|
m.bias_function = LowVramPatch(bias_key, self.patches)
|
|
|
|
patch_counter += 1
|
|
|
|
|
|
|
|
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
|
|
|
m.comfy_cast_weights = True
|
|
|
|
m.comfy_patched_weights = False
|
|
|
|
memory_freed += module_mem
|
|
|
|
logging.debug("freed {}".format(n))
|
2024-08-08 07:27:37 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
self.model.model_lowvram = True
|
|
|
|
self.model.lowvram_patch_counter += patch_counter
|
|
|
|
self.model.model_loaded_weight_memory -= memory_freed
|
|
|
|
return memory_freed
|
2024-08-08 07:27:37 +00:00
|
|
|
|
2024-12-02 19:39:34 +00:00
|
|
|
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
with self.use_ejected(skip_and_inject_on_exit_only=True):
|
|
|
|
unpatch_weights = self.model.current_weight_patches_uuid is not None and (self.model.current_weight_patches_uuid != self.patches_uuid or force_patch_weights)
|
|
|
|
# TODO: force_patch_weights should not unload + reload full model
|
|
|
|
used = self.model.model_loaded_weight_memory
|
|
|
|
self.unpatch_model(self.offload_device, unpatch_weights=unpatch_weights)
|
|
|
|
if unpatch_weights:
|
|
|
|
extra_memory += (used - self.model.model_loaded_weight_memory)
|
|
|
|
|
|
|
|
self.patch_model(load_weights=False)
|
|
|
|
full_load = False
|
|
|
|
if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0:
|
|
|
|
self.apply_hooks(self.forced_hooks, force_apply=True)
|
|
|
|
return 0
|
|
|
|
if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
|
|
|
|
full_load = True
|
|
|
|
current_used = self.model.model_loaded_weight_memory
|
|
|
|
try:
|
|
|
|
self.load(device_to, lowvram_model_memory=current_used + extra_memory, force_patch_weights=force_patch_weights, full_load=full_load)
|
|
|
|
except Exception as e:
|
|
|
|
self.detach()
|
|
|
|
raise e
|
|
|
|
|
|
|
|
return self.model.model_loaded_weight_memory - current_used
|
2024-08-08 07:27:37 +00:00
|
|
|
|
2024-12-02 19:39:34 +00:00
|
|
|
def detach(self, unpatch_all=True):
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
self.eject_model()
|
2024-12-02 19:39:34 +00:00
|
|
|
self.model_patches_to(self.offload_device)
|
|
|
|
if unpatch_all:
|
|
|
|
self.unpatch_model(self.offload_device, unpatch_weights=unpatch_all)
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_DETACH):
|
|
|
|
callback(self, unpatch_all)
|
2024-12-02 19:39:34 +00:00
|
|
|
return self.model
|
|
|
|
|
2024-08-06 17:27:48 +00:00
|
|
|
def current_loaded_device(self):
|
|
|
|
return self.model.device
|
2024-08-22 21:05:12 +00:00
|
|
|
|
|
|
|
def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32):
|
2024-08-22 21:12:00 +00:00
|
|
|
print("WARNING the ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
|
|
|
|
return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype)
|
2024-12-02 19:39:34 +00:00
|
|
|
|
ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)
* Initial changes to calc_cond_batch to eventually support hook_patches
* Added current_patcher property to BaseModel
* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature
* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch
* Added default_conds support in calc_cond_batch func
* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring
* Made CLIP work with hook patches
* Added initial hook scheduling nodes, small renaming/refactoring
* Fixed MaxSpeed and default conds implementations
* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time
* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node
* Initial work on adding 'model_as_lora' lora type to calculate_weight
* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models
* Fix incorrect ref to create_hook_patches_clone after moving function
* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks
* Added wrappers to ModelPatcher to facilitate standardized function wrapping
* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type
* Fix skip_until_exit logic bug breaking injection after first run of model
* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load
* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers
* Refactored callbacks+wrappers to allow storing lists by id
* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks
* Added get_attachment func on ModelPatcher
* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup
* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref
* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations
* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)
* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)
* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)
* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling
* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances
* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks
* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge
* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes
* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges
* Optimized CLIP hook scheduling to treat same strength as same keyframe
* Less fragile memory management.
* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict
* Fix issue.
* Remove useless function.
* Prevent and detect some types of memory leaks.
* Run garbage collector when switching workflow if needed.
* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py
* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers
* Fix issue.
* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming
* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options
* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired
* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality
* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP
* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky
* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)
* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher
* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate
* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True
* Fix cached_hook_patches not respecting target_device/memory_counter results
* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches
* Remove unnecessary torch.no_grad calls for hook patches
* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists
* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes
* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call
* Made encode_from_tokens_scheduled work when no hooks are set on patcher
* Small cleanup of comments
* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case
* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs
* Allow both FLOATS and FLOAT for floats_strength input
* Revert change, does not work
* Made patch_hook_weight_to_device respect set_func and convert_func
* Make discard_model_sampling True by default
* Add changes manually from 'master' so merge conflict resolution goes more smoothly
* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call
* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip
* Made nodes in nodes_hooks be marked as experimental (beta)
* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references
* Made finalize_default_conds area math consistent with other sampling code
* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'
* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 19:51:02 +00:00
|
|
|
def cleanup(self):
|
|
|
|
self.clean_hooks()
|
|
|
|
if hasattr(self.model, "current_patcher"):
|
|
|
|
self.model.current_patcher = None
|
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_CLEANUP):
|
|
|
|
callback(self)
|
|
|
|
|
|
|
|
def add_callback(self, call_type: str, callback: Callable):
|
|
|
|
self.add_callback_with_key(call_type, None, callback)
|
|
|
|
|
|
|
|
def add_callback_with_key(self, call_type: str, key: str, callback: Callable):
|
|
|
|
c = self.callbacks.setdefault(call_type, {}).setdefault(key, [])
|
|
|
|
c.append(callback)
|
|
|
|
|
|
|
|
def remove_callbacks_with_key(self, call_type: str, key: str):
|
|
|
|
c = self.callbacks.get(call_type, {})
|
|
|
|
if key in c:
|
|
|
|
c.pop(key)
|
|
|
|
|
|
|
|
def get_callbacks(self, call_type: str, key: str):
|
|
|
|
return self.callbacks.get(call_type, {}).get(key, [])
|
|
|
|
|
|
|
|
def get_all_callbacks(self, call_type: str):
|
|
|
|
c_list = []
|
|
|
|
for c in self.callbacks.get(call_type, {}).values():
|
|
|
|
c_list.extend(c)
|
|
|
|
return c_list
|
|
|
|
|
|
|
|
def add_wrapper(self, wrapper_type: str, wrapper: Callable):
|
|
|
|
self.add_wrapper_with_key(wrapper_type, None, wrapper)
|
|
|
|
|
|
|
|
def add_wrapper_with_key(self, wrapper_type: str, key: str, wrapper: Callable):
|
|
|
|
w = self.wrappers.setdefault(wrapper_type, {}).setdefault(key, [])
|
|
|
|
w.append(wrapper)
|
|
|
|
|
|
|
|
def remove_wrappers_with_key(self, wrapper_type: str, key: str):
|
|
|
|
w = self.wrappers.get(wrapper_type, {})
|
|
|
|
if key in w:
|
|
|
|
w.pop(key)
|
|
|
|
|
|
|
|
def get_wrappers(self, wrapper_type: str, key: str):
|
|
|
|
return self.wrappers.get(wrapper_type, {}).get(key, [])
|
|
|
|
|
|
|
|
def get_all_wrappers(self, wrapper_type: str):
|
|
|
|
w_list = []
|
|
|
|
for w in self.wrappers.get(wrapper_type, {}).values():
|
|
|
|
w_list.extend(w)
|
|
|
|
return w_list
|
|
|
|
|
|
|
|
def set_attachments(self, key: str, attachment):
|
|
|
|
self.attachments[key] = attachment
|
|
|
|
|
|
|
|
def remove_attachments(self, key: str):
|
|
|
|
if key in self.attachments:
|
|
|
|
self.attachments.pop(key)
|
|
|
|
|
|
|
|
def get_attachment(self, key: str):
|
|
|
|
return self.attachments.get(key, None)
|
|
|
|
|
|
|
|
def set_injections(self, key: str, injections: list[PatcherInjection]):
|
|
|
|
self.injections[key] = injections
|
|
|
|
|
|
|
|
def remove_injections(self, key: str):
|
|
|
|
if key in self.injections:
|
|
|
|
self.injections.pop(key)
|
|
|
|
|
|
|
|
def set_additional_models(self, key: str, models: list['ModelPatcher']):
|
|
|
|
self.additional_models[key] = models
|
|
|
|
|
|
|
|
def remove_additional_models(self, key: str):
|
|
|
|
if key in self.additional_models:
|
|
|
|
self.additional_models.pop(key)
|
|
|
|
|
|
|
|
def get_additional_models_with_key(self, key: str):
|
|
|
|
return self.additional_models.get(key, [])
|
|
|
|
|
|
|
|
def get_additional_models(self):
|
|
|
|
all_models = []
|
|
|
|
for models in self.additional_models.values():
|
|
|
|
all_models.extend(models)
|
|
|
|
return all_models
|
|
|
|
|
|
|
|
def get_nested_additional_models(self):
|
|
|
|
def _evaluate_sub_additional_models(prev_models: list[ModelPatcher], cache_set: set[ModelPatcher]):
|
|
|
|
'''Make sure circular references do not cause infinite recursion.'''
|
|
|
|
next_models = []
|
|
|
|
for model in prev_models:
|
|
|
|
candidates = model.get_additional_models()
|
|
|
|
for c in candidates:
|
|
|
|
if c not in cache_set:
|
|
|
|
next_models.append(c)
|
|
|
|
cache_set.add(c)
|
|
|
|
if len(next_models) == 0:
|
|
|
|
return prev_models
|
|
|
|
return prev_models + _evaluate_sub_additional_models(next_models, cache_set)
|
|
|
|
|
|
|
|
all_models = self.get_additional_models()
|
|
|
|
models_set = set(all_models)
|
|
|
|
real_all_models = _evaluate_sub_additional_models(prev_models=all_models, cache_set=models_set)
|
|
|
|
return real_all_models
|
|
|
|
|
|
|
|
def use_ejected(self, skip_and_inject_on_exit_only=False):
|
|
|
|
return AutoPatcherEjector(self, skip_and_inject_on_exit_only=skip_and_inject_on_exit_only)
|
|
|
|
|
|
|
|
def inject_model(self):
|
|
|
|
if self.is_injected or self.skip_injection:
|
|
|
|
return
|
|
|
|
for injections in self.injections.values():
|
|
|
|
for inj in injections:
|
|
|
|
inj.inject(self)
|
|
|
|
self.is_injected = True
|
|
|
|
if self.is_injected:
|
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_INJECT_MODEL):
|
|
|
|
callback(self)
|
|
|
|
|
|
|
|
def eject_model(self):
|
|
|
|
if not self.is_injected:
|
|
|
|
return
|
|
|
|
for injections in self.injections.values():
|
|
|
|
for inj in injections:
|
|
|
|
inj.eject(self)
|
|
|
|
self.is_injected = False
|
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_EJECT_MODEL):
|
|
|
|
callback(self)
|
|
|
|
|
|
|
|
def pre_run(self):
|
|
|
|
if hasattr(self.model, "current_patcher"):
|
|
|
|
self.model.current_patcher = self
|
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN):
|
|
|
|
callback(self)
|
|
|
|
|
|
|
|
def prepare_state(self, timestep):
|
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE):
|
|
|
|
callback(self, timestep)
|
|
|
|
|
|
|
|
def restore_hook_patches(self):
|
|
|
|
if len(self.hook_patches_backup) > 0:
|
|
|
|
self.hook_patches = self.hook_patches_backup
|
|
|
|
self.hook_patches_backup = {}
|
|
|
|
|
|
|
|
def set_hook_mode(self, hook_mode: comfy.hooks.EnumHookMode):
|
|
|
|
self.hook_mode = hook_mode
|
|
|
|
|
|
|
|
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup):
|
|
|
|
curr_t = t[0]
|
|
|
|
reset_current_hooks = False
|
|
|
|
for hook in hook_group.hooks:
|
|
|
|
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t)
|
|
|
|
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
|
|
|
|
# this will cause the weights to be recalculated when sampling
|
|
|
|
if changed:
|
|
|
|
# reset current_hooks if contains hook that changed
|
|
|
|
if self.current_hooks is not None:
|
|
|
|
for current_hook in self.current_hooks.hooks:
|
|
|
|
if current_hook == hook:
|
|
|
|
reset_current_hooks = True
|
|
|
|
break
|
|
|
|
for cached_group in list(self.cached_hook_patches.keys()):
|
|
|
|
if cached_group.contains(hook):
|
|
|
|
self.cached_hook_patches.pop(cached_group)
|
|
|
|
if reset_current_hooks:
|
|
|
|
self.patch_hooks(None)
|
|
|
|
|
|
|
|
def register_all_hook_patches(self, hooks_dict: dict[comfy.hooks.EnumHookType, dict[comfy.hooks.Hook, None]], target: comfy.hooks.EnumWeightTarget, model_options: dict=None):
|
|
|
|
self.restore_hook_patches()
|
|
|
|
registered_hooks: list[comfy.hooks.Hook] = []
|
|
|
|
# handle WrapperHooks, if model_options provided
|
|
|
|
if model_options is not None:
|
|
|
|
for hook in hooks_dict.get(comfy.hooks.EnumHookType.Wrappers, {}):
|
|
|
|
hook.add_hook_patches(self, model_options, target, registered_hooks)
|
|
|
|
# handle WeightHooks
|
|
|
|
weight_hooks_to_register: list[comfy.hooks.WeightHook] = []
|
|
|
|
for hook in hooks_dict.get(comfy.hooks.EnumHookType.Weight, {}):
|
|
|
|
if hook.hook_ref not in self.hook_patches:
|
|
|
|
weight_hooks_to_register.append(hook)
|
|
|
|
if len(weight_hooks_to_register) > 0:
|
|
|
|
# clone hook_patches to become backup so that any non-dynamic hooks will return to their original state
|
|
|
|
self.hook_patches_backup = create_hook_patches_clone(self.hook_patches)
|
|
|
|
for hook in weight_hooks_to_register:
|
|
|
|
hook.add_hook_patches(self, model_options, target, registered_hooks)
|
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_REGISTER_ALL_HOOK_PATCHES):
|
|
|
|
callback(self, hooks_dict, target)
|
|
|
|
|
|
|
|
def add_hook_patches(self, hook: comfy.hooks.WeightHook, patches, strength_patch=1.0, strength_model=1.0):
|
|
|
|
with self.use_ejected():
|
|
|
|
# NOTE: this mirrors behavior of add_patches func
|
|
|
|
current_hook_patches: dict[str,list] = self.hook_patches.get(hook.hook_ref, {})
|
|
|
|
p = set()
|
|
|
|
model_sd = self.model.state_dict()
|
|
|
|
for k in patches:
|
|
|
|
offset = None
|
|
|
|
function = None
|
|
|
|
if isinstance(k, str):
|
|
|
|
key = k
|
|
|
|
else:
|
|
|
|
offset = k[1]
|
|
|
|
key = k[0]
|
|
|
|
if len(k) > 2:
|
|
|
|
function = k[2]
|
|
|
|
|
|
|
|
if key in model_sd:
|
|
|
|
p.add(k)
|
|
|
|
current_patches: list[tuple] = current_hook_patches.get(key, [])
|
|
|
|
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
|
|
|
|
current_hook_patches[key] = current_patches
|
|
|
|
self.hook_patches[hook.hook_ref] = current_hook_patches
|
|
|
|
# since should care about these patches too to determine if same model, reroll patches_uuid
|
|
|
|
self.patches_uuid = uuid.uuid4()
|
|
|
|
return list(p)
|
|
|
|
|
|
|
|
def get_combined_hook_patches(self, hooks: comfy.hooks.HookGroup):
|
|
|
|
# combined_patches will contain weights of all relevant hooks, per key
|
|
|
|
combined_patches = {}
|
|
|
|
if hooks is not None:
|
|
|
|
for hook in hooks.hooks:
|
|
|
|
hook_patches: dict = self.hook_patches.get(hook.hook_ref, {})
|
|
|
|
for key in hook_patches.keys():
|
|
|
|
current_patches: list[tuple] = combined_patches.get(key, [])
|
|
|
|
if math.isclose(hook.strength, 1.0):
|
|
|
|
current_patches.extend(hook_patches[key])
|
|
|
|
else:
|
|
|
|
# patches are stored as tuples: (strength_patch, (tuple_with_weights,), strength_model)
|
|
|
|
for patch in hook_patches[key]:
|
|
|
|
new_patch = list(patch)
|
|
|
|
new_patch[0] *= hook.strength
|
|
|
|
current_patches.append(tuple(new_patch))
|
|
|
|
combined_patches[key] = current_patches
|
|
|
|
return combined_patches
|
|
|
|
|
|
|
|
def apply_hooks(self, hooks: comfy.hooks.HookGroup, transformer_options: dict=None, force_apply=False):
|
|
|
|
# TODO: return transformer_options dict with any additions from hooks
|
|
|
|
if self.current_hooks == hooks and (not force_apply or (not self.is_clip and hooks is None)):
|
|
|
|
return {}
|
|
|
|
self.patch_hooks(hooks=hooks)
|
|
|
|
for callback in self.get_all_callbacks(CallbacksMP.ON_APPLY_HOOKS):
|
|
|
|
callback(self, hooks)
|
|
|
|
return {}
|
|
|
|
|
|
|
|
def patch_hooks(self, hooks: comfy.hooks.HookGroup):
|
|
|
|
with self.use_ejected():
|
|
|
|
self.unpatch_hooks()
|
|
|
|
if hooks is not None:
|
|
|
|
model_sd_keys = list(self.model_state_dict().keys())
|
|
|
|
memory_counter = None
|
|
|
|
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
|
|
|
|
# TODO: minimum_counter should have a minimum that conforms to loaded model requirements
|
|
|
|
memory_counter = MemoryCounter(initial=comfy.model_management.get_free_memory(self.load_device),
|
|
|
|
minimum=comfy.model_management.minimum_inference_memory()*2)
|
|
|
|
# if have cached weights for hooks, use it
|
|
|
|
cached_weights = self.cached_hook_patches.get(hooks, None)
|
|
|
|
if cached_weights is not None:
|
|
|
|
for key in cached_weights:
|
|
|
|
if key not in model_sd_keys:
|
|
|
|
print(f"WARNING cached hook could not patch. key does not exist in model: {key}")
|
|
|
|
continue
|
|
|
|
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
|
|
|
|
else:
|
|
|
|
relevant_patches = self.get_combined_hook_patches(hooks=hooks)
|
|
|
|
original_weights = None
|
|
|
|
if len(relevant_patches) > 0:
|
|
|
|
original_weights = self.get_key_patches()
|
|
|
|
for key in relevant_patches:
|
|
|
|
if key not in model_sd_keys:
|
|
|
|
print(f"WARNING cached hook would not patch. key does not exist in model: {key}")
|
|
|
|
continue
|
|
|
|
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
|
|
|
|
memory_counter=memory_counter)
|
|
|
|
self.current_hooks = hooks
|
|
|
|
|
|
|
|
def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter):
|
|
|
|
if key not in self.hook_backup:
|
|
|
|
weight: torch.Tensor = comfy.utils.get_attr(self.model, key)
|
|
|
|
target_device = self.offload_device
|
|
|
|
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
|
|
|
|
used = memory_counter.use(weight)
|
|
|
|
if used:
|
|
|
|
target_device = weight.device
|
|
|
|
self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device)
|
|
|
|
comfy.utils.copy_to_param(self.model, key, cached_weights[key][0].to(device=cached_weights[key][1]))
|
|
|
|
|
|
|
|
def clear_cached_hook_weights(self):
|
|
|
|
self.cached_hook_patches.clear()
|
|
|
|
self.patch_hooks(None)
|
|
|
|
|
|
|
|
def patch_hook_weight_to_device(self, hooks: comfy.hooks.HookGroup, combined_patches: dict, key: str, original_weights: dict, memory_counter: MemoryCounter):
|
|
|
|
if key not in combined_patches:
|
|
|
|
return
|
|
|
|
|
|
|
|
weight, set_func, convert_func = get_key_weight(self.model, key)
|
|
|
|
weight: torch.Tensor
|
|
|
|
if key not in self.hook_backup:
|
|
|
|
target_device = self.offload_device
|
|
|
|
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
|
|
|
|
used = memory_counter.use(weight)
|
|
|
|
if used:
|
|
|
|
target_device = weight.device
|
|
|
|
self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device)
|
|
|
|
# TODO: properly handle LowVramPatch, if it ends up an issue
|
|
|
|
temp_weight = comfy.model_management.cast_to_device(weight, weight.device, torch.float32, copy=True)
|
|
|
|
if convert_func is not None:
|
|
|
|
temp_weight = convert_func(temp_weight, inplace=True)
|
|
|
|
|
|
|
|
out_weight = comfy.lora.calculate_weight(combined_patches[key],
|
|
|
|
temp_weight,
|
|
|
|
key, original_weights=original_weights)
|
|
|
|
del original_weights[key]
|
|
|
|
if set_func is None:
|
|
|
|
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
|
|
|
|
comfy.utils.copy_to_param(self.model, key, out_weight)
|
|
|
|
else:
|
|
|
|
set_func(out_weight, inplace_update=True, seed=string_to_seed(key))
|
|
|
|
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
|
|
|
|
# TODO: disable caching if not enough system RAM to do so
|
|
|
|
target_device = self.offload_device
|
|
|
|
used = memory_counter.use(weight)
|
|
|
|
if used:
|
|
|
|
target_device = weight.device
|
|
|
|
self.cached_hook_patches.setdefault(hooks, {})
|
|
|
|
self.cached_hook_patches[hooks][key] = (out_weight.to(device=target_device, copy=False), weight.device)
|
|
|
|
del temp_weight
|
|
|
|
del out_weight
|
|
|
|
del weight
|
|
|
|
|
|
|
|
def unpatch_hooks(self) -> None:
|
|
|
|
with self.use_ejected():
|
|
|
|
if len(self.hook_backup) == 0:
|
|
|
|
self.current_hooks = None
|
|
|
|
return
|
|
|
|
keys = list(self.hook_backup.keys())
|
|
|
|
for k in keys:
|
|
|
|
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
|
|
|
|
|
|
|
|
self.hook_backup.clear()
|
|
|
|
self.current_hooks = None
|
|
|
|
|
|
|
|
def clean_hooks(self):
|
|
|
|
self.unpatch_hooks()
|
|
|
|
self.clear_cached_hook_weights()
|
|
|
|
|
2024-12-02 19:39:34 +00:00
|
|
|
def __del__(self):
|
|
|
|
self.detach(unpatch_all=False)
|
|
|
|
|