Don't unload model weights for non weight patches.

This commit is contained in:
comfyanonymous 2024-03-20 01:29:26 -04:00
parent 150a3e946f
commit c18a203a8a
2 changed files with 76 additions and 28 deletions

View File

@ -273,6 +273,7 @@ class LoadedModel:
def __init__(self, model):
self.model = model
self.device = model.load_device
self.weights_loaded = False
def model_memory(self):
return self.model.model_size()
@ -289,11 +290,13 @@ class LoadedModel:
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
load_weights = not self.weights_loaded
try:
if lowvram_model_memory > 0:
if lowvram_model_memory > 0 and load_weights:
self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory)
else:
self.real_model = self.model.patch_model(device_to=patch_model_to)
self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
@ -302,11 +305,13 @@ class LoadedModel:
if is_intel_xpu() and not args.disable_ipex_optimize:
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
self.weights_loaded = True
return self.real_model
def model_unload(self):
self.model.unpatch_model(self.model.offload_device)
def model_unload(self, unpatch_weights=True):
self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
self.model.model_patches_to(self.model.offload_device)
self.weights_loaded = self.weights_loaded and not unpatch_weights
def __eq__(self, other):
return self.model is other.model
@ -314,15 +319,35 @@ class LoadedModel:
def minimum_inference_memory():
return (1024 * 1024 * 1024)
def unload_model_clones(model):
def unload_model_clones(loaded_model, unload_weights_only=True):
model = loaded_model.model
to_unload = []
for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
if len(to_unload) == 0:
return
same_weights = 0
for i in to_unload:
logging.debug("unload clone {}".format(i))
current_loaded_models.pop(i).model_unload()
if model.clone_has_same_weights(current_loaded_models[i].model):
same_weights += 1
if same_weights == len(to_unload):
unload_weight = False
else:
unload_weight = True
if unload_weights_only and unload_weight == False:
return
for i in to_unload:
logging.debug("unload clone {} {}".format(i, unload_weight))
current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)
loaded_model.weights_loaded = not unload_weight
def free_memory(memory_required, device, keep_loaded=[]):
unloaded_model = False
@ -377,13 +402,16 @@ def load_models_gpu(models, memory_required=0):
total_memory_required = {}
for loaded_model in models_to_load:
unload_model_clones(loaded_model.model)
unload_model_clones(loaded_model, unload_weights_only=True) #unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
for loaded_model in models_to_load:
unload_model_clones(loaded_model, unload_weights_only=False) #unload the rest of the clones where the weights can stay loaded
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device

View File

@ -2,6 +2,7 @@ import torch
import copy
import inspect
import logging
import uuid
import comfy.utils
import comfy.model_management
@ -25,6 +26,7 @@ class ModelPatcher:
self.weight_inplace_update = weight_inplace_update
self.model_lowvram = False
self.patches_uuid = uuid.uuid4()
def model_size(self):
if self.size > 0:
@ -39,10 +41,13 @@ class ModelPatcher:
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.patches_uuid = self.patches_uuid
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.model_keys = self.model_keys
n.backup = self.backup
n.object_patches_backup = self.object_patches_backup
return n
def is_clone(self, other):
@ -50,6 +55,19 @@ class ModelPatcher:
return True
return False
def clone_has_same_weights(self, clone):
if not self.is_clone(clone):
return False
if len(self.patches) == 0 and len(clone.patches) == 0:
return True
if self.patches_uuid == clone.patches_uuid:
if len(self.patches) != len(clone.patches):
logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
else:
return True
def memory_required(self, input_shape):
return self.model.memory_required(input_shape=input_shape)
@ -154,6 +172,7 @@ class ModelPatcher:
current_patches.append((strength_patch, patches[k], strength_model))
self.patches[k] = current_patches
self.patches_uuid = uuid.uuid4()
return list(p)
def get_key_patches(self, filter_prefix=None):
@ -387,31 +406,32 @@ class ModelPatcher:
return weight
def unpatch_model(self, device_to=None):
if self.model_lowvram:
for m in self.model.modules():
if hasattr(m, "prev_comfy_cast_weights"):
m.comfy_cast_weights = m.prev_comfy_cast_weights
del m.prev_comfy_cast_weights
m.weight_function = None
m.bias_function = None
def unpatch_model(self, device_to=None, unpatch_weights=True):
if unpatch_weights:
if self.model_lowvram:
for m in self.model.modules():
if hasattr(m, "prev_comfy_cast_weights"):
m.comfy_cast_weights = m.prev_comfy_cast_weights
del m.prev_comfy_cast_weights
m.weight_function = None
m.bias_function = None
self.model_lowvram = False
self.model_lowvram = False
keys = list(self.backup.keys())
keys = list(self.backup.keys())
if self.weight_inplace_update:
for k in keys:
comfy.utils.copy_to_param(self.model, k, self.backup[k])
else:
for k in keys:
comfy.utils.set_attr_param(self.model, k, self.backup[k])
if self.weight_inplace_update:
for k in keys:
comfy.utils.copy_to_param(self.model, k, self.backup[k])
else:
for k in keys:
comfy.utils.set_attr_param(self.model, k, self.backup[k])
self.backup = {}
self.backup.clear()
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
keys = list(self.object_patches_backup.keys())
for k in keys: