182 lines
5.3 KiB
Python
182 lines
5.3 KiB
Python
import argparse
|
|
import random
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
from lightning import LightningModule
|
|
|
|
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
|
|
|
|
DEFAULT_OPSET = 15
|
|
|
|
SEED = 1234
|
|
random.seed(SEED)
|
|
np.random.seed(SEED)
|
|
torch.manual_seed(SEED)
|
|
torch.cuda.manual_seed(SEED)
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.backends.cudnn.benchmark = False
|
|
|
|
|
|
class MatchaWithVocoder(LightningModule):
|
|
def __init__(self, matcha, vocoder):
|
|
super().__init__()
|
|
self.matcha = matcha
|
|
self.vocoder = vocoder
|
|
|
|
def forward(self, x, x_lengths, scales, spks=None):
|
|
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
|
|
wavs = self.vocoder(mel).clamp(-1, 1)
|
|
lengths = mel_lengths * 256
|
|
return wavs.squeeze(1), lengths
|
|
|
|
|
|
def get_exportable_module(matcha, vocoder, n_timesteps):
|
|
"""
|
|
Return an appropriate `LighteningModule` and output-node names
|
|
based on whether the vocoder is embedded in the final graph
|
|
"""
|
|
|
|
def onnx_forward_func(x, x_lengths, scales, spks=None):
|
|
"""
|
|
Custom forward function for accepting
|
|
scaler parameters as tensors
|
|
"""
|
|
# Extract scaler parameters from tensors
|
|
temperature = scales[0]
|
|
length_scale = scales[1]
|
|
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
|
|
return output["mel"], output["mel_lengths"]
|
|
|
|
# Monkey-patch Matcha's forward function
|
|
matcha.forward = onnx_forward_func
|
|
|
|
if vocoder is None:
|
|
model, output_names = matcha, ["mel", "mel_lengths"]
|
|
else:
|
|
model = MatchaWithVocoder(matcha, vocoder)
|
|
output_names = ["wav", "wav_lengths"]
|
|
return model, output_names
|
|
|
|
|
|
def get_inputs(is_multi_speaker):
|
|
"""
|
|
Create dummy inputs for tracing
|
|
"""
|
|
dummy_input_length = 50
|
|
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
|
|
x_lengths = torch.LongTensor([dummy_input_length])
|
|
|
|
# Scales
|
|
temperature = 0.667
|
|
length_scale = 1.0
|
|
scales = torch.Tensor([temperature, length_scale])
|
|
|
|
model_inputs = [x, x_lengths, scales]
|
|
input_names = [
|
|
"x",
|
|
"x_lengths",
|
|
"scales",
|
|
]
|
|
|
|
if is_multi_speaker:
|
|
spks = torch.LongTensor([1])
|
|
model_inputs.append(spks)
|
|
input_names.append("spks")
|
|
|
|
return tuple(model_inputs), input_names
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
|
|
|
|
parser.add_argument(
|
|
"checkpoint_path",
|
|
type=str,
|
|
help="Path to the model checkpoint",
|
|
)
|
|
parser.add_argument("output", type=str, help="Path to output `.onnx` file")
|
|
parser.add_argument(
|
|
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
|
|
)
|
|
parser.add_argument(
|
|
"--vocoder-name",
|
|
type=str,
|
|
choices=list(VOCODER_URLS.keys()),
|
|
default=None,
|
|
help="Name of the vocoder to embed in the ONNX graph",
|
|
)
|
|
parser.add_argument(
|
|
"--vocoder-checkpoint-path",
|
|
type=str,
|
|
default=None,
|
|
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
|
|
)
|
|
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
|
|
|
|
args = parser.parse_args()
|
|
|
|
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
|
|
print(f"Setting n_timesteps to {args.n_timesteps}")
|
|
|
|
checkpoint_path = Path(args.checkpoint_path)
|
|
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
|
|
|
|
if args.vocoder_name or args.vocoder_checkpoint_path:
|
|
assert (
|
|
args.vocoder_name and args.vocoder_checkpoint_path
|
|
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
|
|
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
|
|
else:
|
|
vocoder = None
|
|
|
|
is_multi_speaker = matcha.n_spks > 1
|
|
|
|
dummy_input, input_names = get_inputs(is_multi_speaker)
|
|
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
|
|
|
|
# Set dynamic shape for inputs/outputs
|
|
dynamic_axes = {
|
|
"x": {0: "batch_size", 1: "time"},
|
|
"x_lengths": {0: "batch_size"},
|
|
}
|
|
|
|
if vocoder is None:
|
|
dynamic_axes.update(
|
|
{
|
|
"mel": {0: "batch_size", 2: "time"},
|
|
"mel_lengths": {0: "batch_size"},
|
|
}
|
|
)
|
|
else:
|
|
print("Embedding the vocoder in the ONNX graph")
|
|
dynamic_axes.update(
|
|
{
|
|
"wav": {0: "batch_size", 1: "time"},
|
|
"wav_lengths": {0: "batch_size"},
|
|
}
|
|
)
|
|
|
|
if is_multi_speaker:
|
|
dynamic_axes["spks"] = {0: "batch_size"}
|
|
|
|
# Create the output directory (if not exists)
|
|
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
model.to_onnx(
|
|
args.output,
|
|
dummy_input,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
dynamic_axes=dynamic_axes,
|
|
opset_version=args.opset,
|
|
export_params=True,
|
|
do_constant_folding=True,
|
|
)
|
|
print(f"[🍵] ONNX model exported to {args.output}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|