245 lines
10 KiB
Python
245 lines
10 KiB
Python
import datetime as dt
|
|
import math
|
|
import random
|
|
|
|
import torch
|
|
|
|
import matcha.utils.monotonic_align as monotonic_align
|
|
from matcha import utils
|
|
from matcha.models.baselightningmodule import BaseLightningClass
|
|
from matcha.models.components.flow_matching import CFM
|
|
from matcha.models.components.text_encoder import TextEncoder
|
|
from matcha.utils.model import (
|
|
denormalize,
|
|
duration_loss,
|
|
fix_len_compatibility,
|
|
generate_path,
|
|
sequence_mask,
|
|
)
|
|
|
|
log = utils.get_pylogger(__name__)
|
|
|
|
|
|
class MatchaTTS(BaseLightningClass): # 🍵
|
|
def __init__(
|
|
self,
|
|
n_vocab,
|
|
n_spks,
|
|
spk_emb_dim,
|
|
n_feats,
|
|
encoder,
|
|
decoder,
|
|
cfm,
|
|
data_statistics,
|
|
out_size,
|
|
optimizer=None,
|
|
scheduler=None,
|
|
prior_loss=True,
|
|
use_precomputed_durations=False,
|
|
):
|
|
super().__init__()
|
|
|
|
self.save_hyperparameters(logger=False)
|
|
|
|
self.n_vocab = n_vocab
|
|
self.n_spks = n_spks
|
|
self.spk_emb_dim = spk_emb_dim
|
|
self.n_feats = n_feats
|
|
self.out_size = out_size
|
|
self.prior_loss = prior_loss
|
|
self.use_precomputed_durations = use_precomputed_durations
|
|
|
|
if n_spks > 1:
|
|
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
|
|
|
|
self.encoder = TextEncoder(
|
|
encoder.encoder_type,
|
|
encoder.encoder_params,
|
|
encoder.duration_predictor_params,
|
|
n_vocab,
|
|
n_spks,
|
|
spk_emb_dim,
|
|
)
|
|
|
|
self.decoder = CFM(
|
|
in_channels=2 * encoder.encoder_params.n_feats,
|
|
out_channel=encoder.encoder_params.n_feats,
|
|
cfm_params=cfm,
|
|
decoder_params=decoder,
|
|
n_spks=n_spks,
|
|
spk_emb_dim=spk_emb_dim,
|
|
)
|
|
|
|
self.update_data_statistics(data_statistics)
|
|
|
|
@torch.inference_mode()
|
|
def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, spks=None, length_scale=1.0):
|
|
"""
|
|
Generates mel-spectrogram from text. Returns:
|
|
1. encoder outputs
|
|
2. decoder outputs
|
|
3. generated alignment
|
|
|
|
Args:
|
|
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
|
|
shape: (batch_size, max_text_length)
|
|
x_lengths (torch.Tensor): lengths of texts in batch.
|
|
shape: (batch_size,)
|
|
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
|
|
temperature (float, optional): controls variance of terminal distribution.
|
|
spks (bool, optional): speaker ids.
|
|
shape: (batch_size,)
|
|
length_scale (float, optional): controls speech pace.
|
|
Increase value to slow down generated speech and vice versa.
|
|
|
|
Returns:
|
|
dict: {
|
|
"encoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
|
|
# Average mel spectrogram generated by the encoder
|
|
"decoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
|
|
# Refined mel spectrogram improved by the CFM
|
|
"attn": torch.Tensor, shape: (batch_size, max_text_length, max_mel_length),
|
|
# Alignment map between text and mel spectrogram
|
|
"mel": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
|
|
# Denormalized mel spectrogram
|
|
"mel_lengths": torch.Tensor, shape: (batch_size,),
|
|
# Lengths of mel spectrograms
|
|
"rtf": float,
|
|
# Real-time factor
|
|
"""
|
|
# For RTF computation
|
|
t = dt.datetime.now()
|
|
|
|
if self.n_spks > 1:
|
|
# Get speaker embedding
|
|
spks = self.spk_emb(spks.long())
|
|
|
|
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
|
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
|
|
|
w = torch.exp(logw) * x_mask
|
|
w_ceil = torch.ceil(w) * length_scale
|
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
|
y_max_length = y_lengths.max()
|
|
y_max_length_ = fix_len_compatibility(y_max_length)
|
|
|
|
# Using obtained durations `w` construct alignment map `attn`
|
|
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
|
|
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
|
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
|
|
|
|
# Align encoded text and get mu_y
|
|
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
|
mu_y = mu_y.transpose(1, 2)
|
|
encoder_outputs = mu_y[:, :, :y_max_length]
|
|
|
|
# Generate sample tracing the probability flow
|
|
decoder_outputs = self.decoder(mu_y, y_mask, n_timesteps, temperature, spks)
|
|
decoder_outputs = decoder_outputs[:, :, :y_max_length]
|
|
|
|
t = (dt.datetime.now() - t).total_seconds()
|
|
rtf = t * 22050 / (decoder_outputs.shape[-1] * 256)
|
|
|
|
return {
|
|
"encoder_outputs": encoder_outputs,
|
|
"decoder_outputs": decoder_outputs,
|
|
"attn": attn[:, :, :y_max_length],
|
|
"mel": denormalize(decoder_outputs, self.mel_mean, self.mel_std),
|
|
"mel_lengths": y_lengths,
|
|
"rtf": rtf,
|
|
}
|
|
|
|
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None, durations=None):
|
|
"""
|
|
Computes 3 losses:
|
|
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
|
|
2. prior loss: loss between mel-spectrogram and encoder outputs.
|
|
3. flow matching loss: loss between mel-spectrogram and decoder outputs.
|
|
|
|
Args:
|
|
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
|
|
shape: (batch_size, max_text_length)
|
|
x_lengths (torch.Tensor): lengths of texts in batch.
|
|
shape: (batch_size,)
|
|
y (torch.Tensor): batch of corresponding mel-spectrograms.
|
|
shape: (batch_size, n_feats, max_mel_length)
|
|
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
|
|
shape: (batch_size,)
|
|
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
|
|
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
|
|
spks (torch.Tensor, optional): speaker ids.
|
|
shape: (batch_size,)
|
|
"""
|
|
if self.n_spks > 1:
|
|
# Get speaker embedding
|
|
spks = self.spk_emb(spks)
|
|
|
|
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
|
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
|
y_max_length = y.shape[-1]
|
|
|
|
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
|
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
|
|
|
if self.use_precomputed_durations:
|
|
attn = generate_path(durations.squeeze(1), attn_mask.squeeze(1))
|
|
else:
|
|
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
|
with torch.no_grad():
|
|
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
|
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
|
y_square = torch.matmul(factor.transpose(1, 2), y**2)
|
|
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
|
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
|
|
log_prior = y_square - y_mu_double + mu_square + const
|
|
|
|
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
|
attn = attn.detach() # b, t_text, T_mel
|
|
|
|
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
|
# refered to as prior loss in the paper
|
|
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
|
dur_loss = duration_loss(logw, logw_, x_lengths)
|
|
|
|
# Cut a small segment of mel-spectrogram in order to increase batch size
|
|
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
|
|
# - Do not need this hack for Matcha-TTS, but it works with it as well
|
|
if not isinstance(out_size, type(None)):
|
|
max_offset = (y_lengths - out_size).clamp(0)
|
|
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
|
|
out_offset = torch.LongTensor(
|
|
[torch.tensor(random.choice(range(start, end)) if end > start else 0) for start, end in offset_ranges]
|
|
).to(y_lengths)
|
|
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device)
|
|
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device)
|
|
|
|
y_cut_lengths = []
|
|
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
|
|
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0)
|
|
y_cut_lengths.append(y_cut_length)
|
|
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
|
|
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
|
|
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
|
|
|
|
y_cut_lengths = torch.LongTensor(y_cut_lengths)
|
|
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
|
|
|
|
attn = attn_cut
|
|
y = y_cut
|
|
y_mask = y_cut_mask
|
|
|
|
# Align encoded text with mel-spectrogram and get mu_y segment
|
|
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
|
mu_y = mu_y.transpose(1, 2)
|
|
|
|
# Compute loss of the decoder
|
|
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
|
|
|
|
if self.prior_loss:
|
|
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
|
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
|
else:
|
|
prior_loss = 0
|
|
|
|
return dur_loss, prior_loss, diff_loss, attn
|