165 lines
5.3 KiB
Python
165 lines
5.3 KiB
Python
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
|
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import random
|
|
import json
|
|
import math
|
|
from functools import partial
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.utils.data import IterableDataset
|
|
from cosyvoice.utils.file_utils import read_lists, read_json_lists
|
|
|
|
|
|
class Processor(IterableDataset):
|
|
|
|
def __init__(self, source, f, *args, **kw):
|
|
assert callable(f)
|
|
self.source = source
|
|
self.f = f
|
|
self.args = args
|
|
self.kw = kw
|
|
|
|
def set_epoch(self, epoch):
|
|
self.source.set_epoch(epoch)
|
|
|
|
def __iter__(self):
|
|
""" Return an iterator over the source dataset processed by the
|
|
given processor.
|
|
"""
|
|
assert self.source is not None
|
|
assert callable(self.f)
|
|
return self.f(iter(self.source), *self.args, **self.kw)
|
|
|
|
def apply(self, f):
|
|
assert callable(f)
|
|
return Processor(self, f, *self.args, **self.kw)
|
|
|
|
|
|
class DistributedSampler:
|
|
|
|
def __init__(self, shuffle=True, partition=True):
|
|
self.epoch = -1
|
|
self.update()
|
|
self.shuffle = shuffle
|
|
self.partition = partition
|
|
|
|
def update(self):
|
|
assert dist.is_available()
|
|
if dist.is_initialized():
|
|
self.rank = dist.get_rank()
|
|
self.world_size = dist.get_world_size()
|
|
else:
|
|
self.rank = 0
|
|
self.world_size = 1
|
|
worker_info = torch.utils.data.get_worker_info()
|
|
if worker_info is None:
|
|
self.worker_id = 0
|
|
self.num_workers = 1
|
|
else:
|
|
self.worker_id = worker_info.id
|
|
self.num_workers = worker_info.num_workers
|
|
return dict(rank=self.rank,
|
|
world_size=self.world_size,
|
|
worker_id=self.worker_id,
|
|
num_workers=self.num_workers)
|
|
|
|
def set_epoch(self, epoch):
|
|
self.epoch = epoch
|
|
|
|
def sample(self, data):
|
|
""" Sample data according to rank/world_size/num_workers
|
|
|
|
Args:
|
|
data(List): input data list
|
|
|
|
Returns:
|
|
List: data list after sample
|
|
"""
|
|
data = list(range(len(data)))
|
|
# force datalist even
|
|
if self.partition:
|
|
if self.shuffle:
|
|
random.Random(self.epoch).shuffle(data)
|
|
if len(data) < self.world_size:
|
|
data = data * math.ceil(self.world_size / len(data))
|
|
data = data[:self.world_size]
|
|
data = data[self.rank::self.world_size]
|
|
if len(data) < self.num_workers:
|
|
data = data * math.ceil(self.num_workers / len(data))
|
|
data = data[:self.num_workers]
|
|
data = data[self.worker_id::self.num_workers]
|
|
return data
|
|
|
|
|
|
class DataList(IterableDataset):
|
|
|
|
def __init__(self, lists, shuffle=True, partition=True):
|
|
self.lists = lists
|
|
self.sampler = DistributedSampler(shuffle, partition)
|
|
|
|
def set_epoch(self, epoch):
|
|
self.sampler.set_epoch(epoch)
|
|
|
|
def __iter__(self):
|
|
sampler_info = self.sampler.update()
|
|
indexes = self.sampler.sample(self.lists)
|
|
for index in indexes:
|
|
data = dict(src=self.lists[index])
|
|
data.update(sampler_info)
|
|
yield data
|
|
|
|
|
|
def Dataset(data_list_file,
|
|
data_pipeline,
|
|
mode='train',
|
|
gan=False,
|
|
shuffle=True,
|
|
partition=True,
|
|
tts_file='',
|
|
prompt_utt2data=''):
|
|
""" Construct dataset from arguments
|
|
|
|
We have two shuffle stage in the Dataset. The first is global
|
|
shuffle at shards tar/raw file level. The second is global shuffle
|
|
at training samples level.
|
|
|
|
Args:
|
|
data_type(str): raw/shard
|
|
tokenizer (BaseTokenizer): tokenizer to tokenize
|
|
partition(bool): whether to do data partition in terms of rank
|
|
"""
|
|
assert mode in ['train', 'inference']
|
|
lists = read_lists(data_list_file)
|
|
if mode == 'inference':
|
|
with open(tts_file) as f:
|
|
tts_data = json.load(f)
|
|
utt2lists = read_json_lists(prompt_utt2data)
|
|
# filter unnecessary file in inference mode
|
|
lists = list({utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists})
|
|
dataset = DataList(lists,
|
|
shuffle=shuffle,
|
|
partition=partition)
|
|
if mode == 'inference':
|
|
# map partial arg to parquet_opener func in inference mode
|
|
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
|
if gan is True:
|
|
# map partial arg to padding func in gan mode
|
|
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan)
|
|
for func in data_pipeline:
|
|
dataset = Processor(dataset, func, mode=mode)
|
|
return dataset
|