189 lines
10 KiB
Python
189 lines
10 KiB
Python
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
from functools import partial
|
||
import onnxruntime
|
||
import torch
|
||
import numpy as np
|
||
import whisper
|
||
from typing import Callable
|
||
import torchaudio.compliance.kaldi as kaldi
|
||
import torchaudio
|
||
import os
|
||
import re
|
||
import inflect
|
||
try:
|
||
import ttsfrd
|
||
use_ttsfrd = True
|
||
except ImportError:
|
||
print("failed to import ttsfrd, use WeTextProcessing instead")
|
||
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
||
from tn.english.normalizer import Normalizer as EnNormalizer
|
||
use_ttsfrd = False
|
||
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
|
||
|
||
|
||
class CosyVoiceFrontEnd:
|
||
|
||
def __init__(self,
|
||
get_tokenizer: Callable,
|
||
feat_extractor: Callable,
|
||
campplus_model: str,
|
||
speech_tokenizer_model: str,
|
||
spk2info: str = '',
|
||
instruct: bool = False,
|
||
allowed_special: str = 'all'):
|
||
self.tokenizer = get_tokenizer()
|
||
self.feat_extractor = feat_extractor
|
||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||
option = onnxruntime.SessionOptions()
|
||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||
option.intra_op_num_threads = 1
|
||
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
||
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
|
||
providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
|
||
"CPUExecutionProvider"])
|
||
if os.path.exists(spk2info):
|
||
self.spk2info = torch.load(spk2info, map_location=self.device)
|
||
else:
|
||
self.spk2info = {}
|
||
self.instruct = instruct
|
||
self.allowed_special = allowed_special
|
||
self.inflect_parser = inflect.engine()
|
||
self.use_ttsfrd = use_ttsfrd
|
||
if self.use_ttsfrd:
|
||
self.frd = ttsfrd.TtsFrontendEngine()
|
||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
|
||
'failed to initialize ttsfrd resource'
|
||
self.frd.set_lang_type('pinyin')
|
||
self.frd.enable_pinyin_mix(True)
|
||
self.frd.set_breakmodel_index(1)
|
||
else:
|
||
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False)
|
||
self.en_tn_model = EnNormalizer()
|
||
|
||
def _extract_text_token(self, text):
|
||
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
||
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
||
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
||
return text_token, text_token_len
|
||
|
||
def _extract_speech_token(self, speech):
|
||
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
||
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
||
speech_token = self.speech_tokenizer_session.run(None,
|
||
{self.speech_tokenizer_session.get_inputs()[0].name:
|
||
feat.detach().cpu().numpy(),
|
||
self.speech_tokenizer_session.get_inputs()[1].name:
|
||
np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
||
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
||
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
||
return speech_token, speech_token_len
|
||
|
||
def _extract_spk_embedding(self, speech):
|
||
feat = kaldi.fbank(speech,
|
||
num_mel_bins=80,
|
||
dither=0,
|
||
sample_frequency=16000)
|
||
feat = feat - feat.mean(dim=0, keepdim=True)
|
||
embedding = self.campplus_session.run(None,
|
||
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||
embedding = torch.tensor([embedding]).to(self.device)
|
||
return embedding
|
||
|
||
def _extract_speech_feat(self, speech):
|
||
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
||
speech_feat = speech_feat.unsqueeze(dim=0)
|
||
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
||
return speech_feat, speech_feat_len
|
||
|
||
def text_normalize(self, text, split=True):
|
||
text = text.strip()
|
||
if contains_chinese(text):
|
||
if self.use_ttsfrd:
|
||
text = self.frd.get_frd_extra_info(text, 'input')
|
||
else:
|
||
text = self.zh_tn_model.normalize(text)
|
||
text = text.replace("\n", "")
|
||
text = replace_blank(text)
|
||
text = replace_corner_mark(text)
|
||
text = text.replace(".", "。")
|
||
text = text.replace(" - ", ",")
|
||
text = remove_bracket(text)
|
||
text = re.sub(r'[,,、]+$', '。', text)
|
||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
||
token_min_n=60, merge_len=20, comma_split=False))
|
||
else:
|
||
if self.use_ttsfrd:
|
||
text = self.frd.get_frd_extra_info(text, 'input')
|
||
else:
|
||
text = self.en_tn_model.normalize(text)
|
||
text = spell_out_number(text, self.inflect_parser)
|
||
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||
token_min_n=60, merge_len=20, comma_split=False))
|
||
if split is False:
|
||
return text
|
||
return texts
|
||
|
||
def frontend_sft(self, tts_text, spk_id):
|
||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||
embedding = self.spk2info[spk_id]['embedding']
|
||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
||
return model_input
|
||
|
||
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
||
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
||
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
||
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
||
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
||
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
||
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
||
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
||
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
||
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
||
'llm_embedding': embedding, 'flow_embedding': embedding}
|
||
return model_input
|
||
|
||
def frontend_cross_lingual(self, tts_text, prompt_speech_16k):
|
||
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k)
|
||
# in cross lingual mode, we remove prompt in llm
|
||
del model_input['prompt_text']
|
||
del model_input['prompt_text_len']
|
||
del model_input['llm_prompt_speech_token']
|
||
del model_input['llm_prompt_speech_token_len']
|
||
return model_input
|
||
|
||
def frontend_instruct(self, tts_text, spk_id, instruct_text):
|
||
model_input = self.frontend_sft(tts_text, spk_id)
|
||
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
||
del model_input['llm_embedding']
|
||
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
|
||
model_input['prompt_text'] = instruct_text_token
|
||
model_input['prompt_text_len'] = instruct_text_token_len
|
||
return model_input
|
||
|
||
def frontend_vc(self, source_speech_16k, prompt_speech_16k):
|
||
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
||
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
||
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
||
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
||
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
||
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
||
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
||
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
||
'flow_embedding': embedding}
|
||
return model_input
|