114 lines
6.2 KiB
Python
114 lines
6.2 KiB
Python
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import time
|
|
from tqdm import tqdm
|
|
from hyperpyyaml import load_hyperpyyaml
|
|
from modelscope import snapshot_download
|
|
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
|
from cosyvoice.cli.model import CosyVoiceModel
|
|
from cosyvoice.utils.file_utils import logging
|
|
|
|
|
|
class CosyVoice:
|
|
|
|
def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
|
|
instruct = True if '-Instruct' in model_dir else False
|
|
self.model_dir = model_dir
|
|
if not os.path.exists(model_dir):
|
|
model_dir = snapshot_download(model_dir)
|
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
|
configs = load_hyperpyyaml(f)
|
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
|
configs['feat_extractor'],
|
|
'{}/campplus.onnx'.format(model_dir),
|
|
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
|
'{}/spk2info.pt'.format(model_dir),
|
|
instruct,
|
|
configs['allowed_special'])
|
|
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
|
|
self.model.load('{}/llm.pt'.format(model_dir),
|
|
'{}/flow.pt'.format(model_dir),
|
|
'{}/hift.pt'.format(model_dir))
|
|
if load_jit:
|
|
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
|
'{}/llm.llm.fp16.zip'.format(model_dir),
|
|
'{}/flow.encoder.fp32.zip'.format(model_dir))
|
|
if load_onnx:
|
|
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
|
|
del configs
|
|
|
|
def list_avaliable_spks(self):
|
|
spks = list(self.frontend.spk2info.keys())
|
|
return spks
|
|
|
|
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0):
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0):
|
|
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0):
|
|
if self.frontend.instruct is True:
|
|
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0):
|
|
if self.frontend.instruct is False:
|
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
|
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
|
start_time = time.time()
|
|
logging.info('synthesis text {}'.format(i))
|
|
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|
|
|
|
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
|
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k)
|
|
start_time = time.time()
|
|
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
yield model_output
|
|
start_time = time.time()
|