78 lines
2.9 KiB
Python
78 lines
2.9 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
import onnxruntime
|
|
import torch
|
|
import torchaudio
|
|
import torchaudio.compliance.kaldi as kaldi
|
|
from tqdm import tqdm
|
|
|
|
|
|
def single_job(utt):
|
|
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
|
if sample_rate != 16000:
|
|
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
|
feat = kaldi.fbank(audio,
|
|
num_mel_bins=80,
|
|
dither=0,
|
|
sample_frequency=16000)
|
|
feat = feat - feat.mean(dim=0, keepdim=True)
|
|
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
|
return utt, embedding
|
|
|
|
|
|
def main(args):
|
|
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
|
utt2embedding, spk2embedding = {}, {}
|
|
for future in tqdm(as_completed(all_task)):
|
|
utt, embedding = future.result()
|
|
utt2embedding[utt] = embedding
|
|
spk = utt2spk[utt]
|
|
if spk not in spk2embedding:
|
|
spk2embedding[spk] = []
|
|
spk2embedding[spk].append(embedding)
|
|
for k, v in spk2embedding.items():
|
|
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
|
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
|
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--dir", type=str)
|
|
parser.add_argument("--onnx_path", type=str)
|
|
parser.add_argument("--num_thread", type=int, default=8)
|
|
args = parser.parse_args()
|
|
|
|
utt2wav, utt2spk = {}, {}
|
|
with open('{}/wav.scp'.format(args.dir)) as f:
|
|
for l in f:
|
|
l = l.replace('\n', '').split()
|
|
utt2wav[l[0]] = l[1]
|
|
with open('{}/utt2spk'.format(args.dir)) as f:
|
|
for l in f:
|
|
l = l.replace('\n', '').split()
|
|
utt2spk[l[0]] = l[1]
|
|
|
|
option = onnxruntime.SessionOptions()
|
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
option.intra_op_num_threads = 1
|
|
providers = ["CPUExecutionProvider"]
|
|
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
|
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
|
|
|
main(args)
|