444 lines
14 KiB
Python
444 lines
14 KiB
Python
import math
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from conformer import ConformerBlock
|
|
from diffusers.models.activations import get_activation
|
|
from einops import pack, rearrange, repeat
|
|
|
|
from matcha.models.components.transformer import BasicTransformerBlock
|
|
|
|
|
|
class SinusoidalPosEmb(torch.nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
|
|
|
|
def forward(self, x, scale=1000):
|
|
if x.ndim < 1:
|
|
x = x.unsqueeze(0)
|
|
device = x.device
|
|
half_dim = self.dim // 2
|
|
emb = math.log(10000) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
|
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
|
return emb
|
|
|
|
|
|
class Block1D(torch.nn.Module):
|
|
def __init__(self, dim, dim_out, groups=8):
|
|
super().__init__()
|
|
self.block = torch.nn.Sequential(
|
|
torch.nn.Conv1d(dim, dim_out, 3, padding=1),
|
|
torch.nn.GroupNorm(groups, dim_out),
|
|
nn.Mish(),
|
|
)
|
|
|
|
def forward(self, x, mask):
|
|
output = self.block(x * mask)
|
|
return output * mask
|
|
|
|
|
|
class ResnetBlock1D(torch.nn.Module):
|
|
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
|
|
super().__init__()
|
|
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
|
|
|
|
self.block1 = Block1D(dim, dim_out, groups=groups)
|
|
self.block2 = Block1D(dim_out, dim_out, groups=groups)
|
|
|
|
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
|
|
|
|
def forward(self, x, mask, time_emb):
|
|
h = self.block1(x, mask)
|
|
h += self.mlp(time_emb).unsqueeze(-1)
|
|
h = self.block2(h, mask)
|
|
output = h + self.res_conv(x * mask)
|
|
return output
|
|
|
|
|
|
class Downsample1D(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
|
|
|
|
def forward(self, x):
|
|
return self.conv(x)
|
|
|
|
|
|
class TimestepEmbedding(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
time_embed_dim: int,
|
|
act_fn: str = "silu",
|
|
out_dim: int = None,
|
|
post_act_fn: Optional[str] = None,
|
|
cond_proj_dim=None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
|
|
|
|
if cond_proj_dim is not None:
|
|
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
|
|
else:
|
|
self.cond_proj = None
|
|
|
|
self.act = get_activation(act_fn)
|
|
|
|
if out_dim is not None:
|
|
time_embed_dim_out = out_dim
|
|
else:
|
|
time_embed_dim_out = time_embed_dim
|
|
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
|
|
|
|
if post_act_fn is None:
|
|
self.post_act = None
|
|
else:
|
|
self.post_act = get_activation(post_act_fn)
|
|
|
|
def forward(self, sample, condition=None):
|
|
if condition is not None:
|
|
sample = sample + self.cond_proj(condition)
|
|
sample = self.linear_1(sample)
|
|
|
|
if self.act is not None:
|
|
sample = self.act(sample)
|
|
|
|
sample = self.linear_2(sample)
|
|
|
|
if self.post_act is not None:
|
|
sample = self.post_act(sample)
|
|
return sample
|
|
|
|
|
|
class Upsample1D(nn.Module):
|
|
"""A 1D upsampling layer with an optional convolution.
|
|
|
|
Parameters:
|
|
channels (`int`):
|
|
number of channels in the inputs and outputs.
|
|
use_conv (`bool`, default `False`):
|
|
option to use a convolution.
|
|
use_conv_transpose (`bool`, default `False`):
|
|
option to use a convolution transpose.
|
|
out_channels (`int`, optional):
|
|
number of output channels. Defaults to `channels`.
|
|
"""
|
|
|
|
def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.use_conv_transpose = use_conv_transpose
|
|
self.name = name
|
|
|
|
self.conv = None
|
|
if use_conv_transpose:
|
|
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
|
|
elif use_conv:
|
|
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
|
|
|
|
def forward(self, inputs):
|
|
assert inputs.shape[1] == self.channels
|
|
if self.use_conv_transpose:
|
|
return self.conv(inputs)
|
|
|
|
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
|
|
|
|
if self.use_conv:
|
|
outputs = self.conv(outputs)
|
|
|
|
return outputs
|
|
|
|
|
|
class ConformerWrapper(ConformerBlock):
|
|
def __init__( # pylint: disable=useless-super-delegation
|
|
self,
|
|
*,
|
|
dim,
|
|
dim_head=64,
|
|
heads=8,
|
|
ff_mult=4,
|
|
conv_expansion_factor=2,
|
|
conv_kernel_size=31,
|
|
attn_dropout=0,
|
|
ff_dropout=0,
|
|
conv_dropout=0,
|
|
conv_causal=False,
|
|
):
|
|
super().__init__(
|
|
dim=dim,
|
|
dim_head=dim_head,
|
|
heads=heads,
|
|
ff_mult=ff_mult,
|
|
conv_expansion_factor=conv_expansion_factor,
|
|
conv_kernel_size=conv_kernel_size,
|
|
attn_dropout=attn_dropout,
|
|
ff_dropout=ff_dropout,
|
|
conv_dropout=conv_dropout,
|
|
conv_causal=conv_causal,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
timestep=None,
|
|
):
|
|
return super().forward(x=hidden_states, mask=attention_mask.bool())
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
channels=(256, 256),
|
|
dropout=0.05,
|
|
attention_head_dim=64,
|
|
n_blocks=1,
|
|
num_mid_blocks=2,
|
|
num_heads=4,
|
|
act_fn="snake",
|
|
down_block_type="transformer",
|
|
mid_block_type="transformer",
|
|
up_block_type="transformer",
|
|
):
|
|
super().__init__()
|
|
channels = tuple(channels)
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
|
|
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
|
time_embed_dim = channels[0] * 4
|
|
self.time_mlp = TimestepEmbedding(
|
|
in_channels=in_channels,
|
|
time_embed_dim=time_embed_dim,
|
|
act_fn="silu",
|
|
)
|
|
|
|
self.down_blocks = nn.ModuleList([])
|
|
self.mid_blocks = nn.ModuleList([])
|
|
self.up_blocks = nn.ModuleList([])
|
|
|
|
output_channel = in_channels
|
|
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
|
input_channel = output_channel
|
|
output_channel = channels[i]
|
|
is_last = i == len(channels) - 1
|
|
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
transformer_blocks = nn.ModuleList(
|
|
[
|
|
self.get_block(
|
|
down_block_type,
|
|
output_channel,
|
|
attention_head_dim,
|
|
num_heads,
|
|
dropout,
|
|
act_fn,
|
|
)
|
|
for _ in range(n_blocks)
|
|
]
|
|
)
|
|
downsample = (
|
|
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
)
|
|
|
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
|
|
|
for i in range(num_mid_blocks):
|
|
input_channel = channels[-1]
|
|
out_channels = channels[-1]
|
|
|
|
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
|
|
transformer_blocks = nn.ModuleList(
|
|
[
|
|
self.get_block(
|
|
mid_block_type,
|
|
output_channel,
|
|
attention_head_dim,
|
|
num_heads,
|
|
dropout,
|
|
act_fn,
|
|
)
|
|
for _ in range(n_blocks)
|
|
]
|
|
)
|
|
|
|
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
|
|
|
channels = channels[::-1] + (channels[0],)
|
|
for i in range(len(channels) - 1):
|
|
input_channel = channels[i]
|
|
output_channel = channels[i + 1]
|
|
is_last = i == len(channels) - 2
|
|
|
|
resnet = ResnetBlock1D(
|
|
dim=2 * input_channel,
|
|
dim_out=output_channel,
|
|
time_emb_dim=time_embed_dim,
|
|
)
|
|
transformer_blocks = nn.ModuleList(
|
|
[
|
|
self.get_block(
|
|
up_block_type,
|
|
output_channel,
|
|
attention_head_dim,
|
|
num_heads,
|
|
dropout,
|
|
act_fn,
|
|
)
|
|
for _ in range(n_blocks)
|
|
]
|
|
)
|
|
upsample = (
|
|
Upsample1D(output_channel, use_conv_transpose=True)
|
|
if not is_last
|
|
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
)
|
|
|
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
|
|
|
self.final_block = Block1D(channels[-1], channels[-1])
|
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
|
|
|
self.initialize_weights()
|
|
# nn.init.normal_(self.final_proj.weight)
|
|
|
|
@staticmethod
|
|
def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn):
|
|
if block_type == "conformer":
|
|
block = ConformerWrapper(
|
|
dim=dim,
|
|
dim_head=attention_head_dim,
|
|
heads=num_heads,
|
|
ff_mult=1,
|
|
conv_expansion_factor=2,
|
|
ff_dropout=dropout,
|
|
attn_dropout=dropout,
|
|
conv_dropout=dropout,
|
|
conv_kernel_size=31,
|
|
)
|
|
elif block_type == "transformer":
|
|
block = BasicTransformerBlock(
|
|
dim=dim,
|
|
num_attention_heads=num_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
dropout=dropout,
|
|
activation_fn=act_fn,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown block type {block_type}")
|
|
|
|
return block
|
|
|
|
def initialize_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv1d):
|
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
|
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
elif isinstance(m, nn.GroupNorm):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
|
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
|
"""Forward pass of the UNet1DConditional model.
|
|
|
|
Args:
|
|
x (torch.Tensor): shape (batch_size, in_channels, time)
|
|
mask (_type_): shape (batch_size, 1, time)
|
|
t (_type_): shape (batch_size)
|
|
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
|
cond (_type_, optional): placeholder for future use. Defaults to None.
|
|
|
|
Raises:
|
|
ValueError: _description_
|
|
ValueError: _description_
|
|
|
|
Returns:
|
|
_type_: _description_
|
|
"""
|
|
|
|
t = self.time_embeddings(t)
|
|
t = self.time_mlp(t)
|
|
|
|
x = pack([x, mu], "b * t")[0]
|
|
|
|
if spks is not None:
|
|
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
|
x = pack([x, spks], "b * t")[0]
|
|
|
|
hiddens = []
|
|
masks = [mask]
|
|
for resnet, transformer_blocks, downsample in self.down_blocks:
|
|
mask_down = masks[-1]
|
|
x = resnet(x, mask_down, t)
|
|
x = rearrange(x, "b c t -> b t c")
|
|
mask_down = rearrange(mask_down, "b 1 t -> b t")
|
|
for transformer_block in transformer_blocks:
|
|
x = transformer_block(
|
|
hidden_states=x,
|
|
attention_mask=mask_down,
|
|
timestep=t,
|
|
)
|
|
x = rearrange(x, "b t c -> b c t")
|
|
mask_down = rearrange(mask_down, "b t -> b 1 t")
|
|
hiddens.append(x) # Save hidden states for skip connections
|
|
x = downsample(x * mask_down)
|
|
masks.append(mask_down[:, :, ::2])
|
|
|
|
masks = masks[:-1]
|
|
mask_mid = masks[-1]
|
|
|
|
for resnet, transformer_blocks in self.mid_blocks:
|
|
x = resnet(x, mask_mid, t)
|
|
x = rearrange(x, "b c t -> b t c")
|
|
mask_mid = rearrange(mask_mid, "b 1 t -> b t")
|
|
for transformer_block in transformer_blocks:
|
|
x = transformer_block(
|
|
hidden_states=x,
|
|
attention_mask=mask_mid,
|
|
timestep=t,
|
|
)
|
|
x = rearrange(x, "b t c -> b c t")
|
|
mask_mid = rearrange(mask_mid, "b t -> b 1 t")
|
|
|
|
for resnet, transformer_blocks, upsample in self.up_blocks:
|
|
mask_up = masks.pop()
|
|
x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t)
|
|
x = rearrange(x, "b c t -> b t c")
|
|
mask_up = rearrange(mask_up, "b 1 t -> b t")
|
|
for transformer_block in transformer_blocks:
|
|
x = transformer_block(
|
|
hidden_states=x,
|
|
attention_mask=mask_up,
|
|
timestep=t,
|
|
)
|
|
x = rearrange(x, "b t c -> b c t")
|
|
mask_up = rearrange(mask_up, "b t -> b 1 t")
|
|
x = upsample(x * mask_up)
|
|
|
|
x = self.final_block(x, mask_up)
|
|
output = self.final_proj(x * mask_up)
|
|
|
|
return output * mask
|