384 lines
12 KiB
Python
384 lines
12 KiB
Python
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
|
# 2024 Alibaba Inc (Xiang Lyu)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from ESPnet(https://github.com/espnet/espnet)
|
|
"""Subsampling layer definition."""
|
|
|
|
from typing import Tuple, Union
|
|
|
|
import torch
|
|
|
|
|
|
class BaseSubsampling(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.right_context = 0
|
|
self.subsampling_rate = 1
|
|
|
|
def position_encoding(self, offset: Union[int, torch.Tensor],
|
|
size: int) -> torch.Tensor:
|
|
return self.pos_enc.position_encoding(offset, size)
|
|
|
|
|
|
class EmbedinigNoSubsampling(BaseSubsampling):
|
|
"""Embedding input without subsampling
|
|
"""
|
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
|
pos_enc_class: torch.nn.Module):
|
|
super().__init__()
|
|
self.embed = torch.nn.Embedding(idim, odim)
|
|
self.pos_enc = pos_enc_class
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
offset: Union[int, torch.Tensor] = 0
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Input x.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (#batch, time, idim).
|
|
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
|
|
|
Returns:
|
|
torch.Tensor: linear input tensor (#batch, time', odim),
|
|
where time' = time .
|
|
torch.Tensor: linear input mask (#batch, 1, time'),
|
|
where time' = time .
|
|
|
|
"""
|
|
x = self.embed(x)
|
|
x, pos_emb = self.pos_enc(x, offset)
|
|
return x, pos_emb, x_mask
|
|
|
|
|
|
class LinearNoSubsampling(BaseSubsampling):
|
|
"""Linear transform the input without subsampling
|
|
|
|
Args:
|
|
idim (int): Input dimension.
|
|
odim (int): Output dimension.
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
|
pos_enc_class: torch.nn.Module):
|
|
"""Construct an linear object."""
|
|
super().__init__()
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Linear(idim, odim),
|
|
torch.nn.LayerNorm(odim, eps=1e-5),
|
|
torch.nn.Dropout(dropout_rate),
|
|
)
|
|
self.pos_enc = pos_enc_class
|
|
self.right_context = 0
|
|
self.subsampling_rate = 1
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
offset: Union[int, torch.Tensor] = 0
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Input x.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (#batch, time, idim).
|
|
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
|
|
|
Returns:
|
|
torch.Tensor: linear input tensor (#batch, time', odim),
|
|
where time' = time .
|
|
torch.Tensor: linear input mask (#batch, 1, time'),
|
|
where time' = time .
|
|
|
|
"""
|
|
x = self.out(x)
|
|
x, pos_emb = self.pos_enc(x, offset)
|
|
return x, pos_emb, x_mask
|
|
|
|
|
|
class Conv1dSubsampling2(BaseSubsampling):
|
|
"""Convolutional 1D subsampling (to 1/2 length).
|
|
It is designed for Whisper, ref:
|
|
https://github.com/openai/whisper/blob/main/whisper/model.py
|
|
|
|
Args:
|
|
idim (int): Input dimension.
|
|
odim (int): Output dimension.
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
|
pos_enc_class: torch.nn.Module):
|
|
"""Construct an Conv1dSubsampling2 object."""
|
|
super().__init__()
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1),
|
|
torch.nn.GELU(),
|
|
torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1),
|
|
torch.nn.GELU(),
|
|
)
|
|
self.pos_enc = pos_enc_class
|
|
# The right context for every conv layer is computed by:
|
|
# (kernel_size - 1) * frame_rate_of_this_layer
|
|
self.subsampling_rate = 2
|
|
# 4 = (3 - 1) * 1 + (3 - 1) * 1
|
|
self.right_context = 4
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
offset: Union[int, torch.Tensor] = 0
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Subsample x.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (#batch, time, idim).
|
|
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
|
|
|
Returns:
|
|
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
|
where time' = time // 2.
|
|
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
|
where time' = time // 2.
|
|
torch.Tensor: positional encoding
|
|
|
|
"""
|
|
time = x.size(1)
|
|
x = x.transpose(1, 2) # (b, f, t)
|
|
x = self.conv(x)
|
|
x = x.transpose(1, 2) # (b, t, f)
|
|
x, pos_emb = self.pos_enc(x, offset)
|
|
return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
|
|
|
|
|
|
class Conv2dSubsampling4(BaseSubsampling):
|
|
"""Convolutional 2D subsampling (to 1/4 length).
|
|
|
|
Args:
|
|
idim (int): Input dimension.
|
|
odim (int): Output dimension.
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
|
pos_enc_class: torch.nn.Module):
|
|
"""Construct an Conv2dSubsampling4 object."""
|
|
super().__init__()
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(1, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
|
|
self.pos_enc = pos_enc_class
|
|
# The right context for every conv layer is computed by:
|
|
# (kernel_size - 1) * frame_rate_of_this_layer
|
|
self.subsampling_rate = 4
|
|
# 6 = (3 - 1) * 1 + (3 - 1) * 2
|
|
self.right_context = 6
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
offset: Union[int, torch.Tensor] = 0
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Subsample x.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (#batch, time, idim).
|
|
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
|
|
|
Returns:
|
|
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
|
where time' = time // 4.
|
|
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
|
where time' = time // 4.
|
|
torch.Tensor: positional encoding
|
|
|
|
"""
|
|
x = x.unsqueeze(1) # (b, c=1, t, f)
|
|
x = self.conv(x)
|
|
b, c, t, f = x.size()
|
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
x, pos_emb = self.pos_enc(x, offset)
|
|
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
|
|
|
|
|
|
class Conv2dSubsampling6(BaseSubsampling):
|
|
"""Convolutional 2D subsampling (to 1/6 length).
|
|
Args:
|
|
idim (int): Input dimension.
|
|
odim (int): Output dimension.
|
|
dropout_rate (float): Dropout rate.
|
|
pos_enc (torch.nn.Module): Custom position encoding layer.
|
|
"""
|
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
|
pos_enc_class: torch.nn.Module):
|
|
"""Construct an Conv2dSubsampling6 object."""
|
|
super().__init__()
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(1, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, 5, 3),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
|
|
odim)
|
|
self.pos_enc = pos_enc_class
|
|
# 10 = (3 - 1) * 1 + (5 - 1) * 2
|
|
self.subsampling_rate = 6
|
|
self.right_context = 10
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
offset: Union[int, torch.Tensor] = 0
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Subsample x.
|
|
Args:
|
|
x (torch.Tensor): Input tensor (#batch, time, idim).
|
|
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
|
|
|
Returns:
|
|
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
|
where time' = time // 6.
|
|
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
|
where time' = time // 6.
|
|
torch.Tensor: positional encoding
|
|
"""
|
|
x = x.unsqueeze(1) # (b, c, t, f)
|
|
x = self.conv(x)
|
|
b, c, t, f = x.size()
|
|
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
x, pos_emb = self.pos_enc(x, offset)
|
|
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
|
|
|
|
|
|
class Conv2dSubsampling8(BaseSubsampling):
|
|
"""Convolutional 2D subsampling (to 1/8 length).
|
|
|
|
Args:
|
|
idim (int): Input dimension.
|
|
odim (int): Output dimension.
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
|
pos_enc_class: torch.nn.Module):
|
|
"""Construct an Conv2dSubsampling8 object."""
|
|
super().__init__()
|
|
self.conv = torch.nn.Sequential(
|
|
torch.nn.Conv2d(1, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(odim, odim, 3, 2),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.linear = torch.nn.Linear(
|
|
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
|
|
self.pos_enc = pos_enc_class
|
|
self.subsampling_rate = 8
|
|
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
|
|
self.right_context = 14
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
offset: Union[int, torch.Tensor] = 0
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Subsample x.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (#batch, time, idim).
|
|
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
|
|
|
Returns:
|
|
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
|
where time' = time // 8.
|
|
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
|
where time' = time // 8.
|
|
torch.Tensor: positional encoding
|
|
"""
|
|
x = x.unsqueeze(1) # (b, c, t, f)
|
|
x = self.conv(x)
|
|
b, c, t, f = x.size()
|
|
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
|
x, pos_emb = self.pos_enc(x, offset)
|
|
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
|
|
|
|
|
|
class LegacyLinearNoSubsampling(BaseSubsampling):
|
|
"""Linear transform the input without subsampling
|
|
|
|
Args:
|
|
idim (int): Input dimension.
|
|
odim (int): Output dimension.
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
"""
|
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
|
pos_enc_class: torch.nn.Module):
|
|
"""Construct an linear object."""
|
|
super().__init__()
|
|
self.out = torch.nn.Sequential(
|
|
torch.nn.Linear(idim, odim),
|
|
torch.nn.LayerNorm(odim, eps=1e-5),
|
|
torch.nn.Dropout(dropout_rate),
|
|
torch.nn.ReLU(),
|
|
)
|
|
self.pos_enc = pos_enc_class
|
|
self.right_context = 0
|
|
self.subsampling_rate = 1
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
offset: Union[int, torch.Tensor] = 0
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Input x.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor (#batch, time, idim).
|
|
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
|
|
|
Returns:
|
|
torch.Tensor: linear input tensor (#batch, time', odim),
|
|
where time' = time .
|
|
torch.Tensor: linear input mask (#batch, 1, time'),
|
|
where time' = time .
|
|
|
|
"""
|
|
x = self.out(x)
|
|
x, pos_emb = self.pos_enc(x, offset)
|
|
return x, pos_emb, x_mask
|