397 lines
16 KiB
Python
397 lines
16 KiB
Python
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
|
# 2024 Alibaba Inc (Xiang Lyu)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from ESPnet(https://github.com/espnet/espnet)
|
|
"""Decoder definition."""
|
|
from typing import Tuple, List, Optional
|
|
|
|
import torch
|
|
import torch.utils.checkpoint as ckpt
|
|
import logging
|
|
|
|
from cosyvoice.transformer.decoder_layer import DecoderLayer
|
|
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
|
from cosyvoice.utils.class_utils import (
|
|
COSYVOICE_EMB_CLASSES,
|
|
COSYVOICE_ATTENTION_CLASSES,
|
|
COSYVOICE_ACTIVATION_CLASSES,
|
|
)
|
|
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)
|
|
|
|
|
|
class TransformerDecoder(torch.nn.Module):
|
|
"""Base class of Transfomer decoder module.
|
|
Args:
|
|
vocab_size: output dim
|
|
encoder_output_size: dimension of attention
|
|
attention_heads: the number of heads of multi head attention
|
|
linear_units: the hidden units number of position-wise feedforward
|
|
num_blocks: the number of decoder blocks
|
|
dropout_rate: dropout rate
|
|
self_attention_dropout_rate: dropout rate for attention
|
|
input_layer: input layer type
|
|
use_output_layer: whether to use output layer
|
|
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
|
normalize_before:
|
|
True: use layer_norm before each sub-block of a layer.
|
|
False: use layer_norm after each sub-block of a layer.
|
|
src_attention: if false, encoder-decoder cross attention is not
|
|
applied, such as CIF model
|
|
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
|
gradient_checkpointing: rerunning a forward-pass segment for each
|
|
checkpointed segment during backward.
|
|
tie_word_embedding: Tie or clone module weights depending of whether we are
|
|
using TorchScript or not
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size: int,
|
|
encoder_output_size: int,
|
|
attention_heads: int = 4,
|
|
linear_units: int = 2048,
|
|
num_blocks: int = 6,
|
|
dropout_rate: float = 0.1,
|
|
positional_dropout_rate: float = 0.1,
|
|
self_attention_dropout_rate: float = 0.0,
|
|
src_attention_dropout_rate: float = 0.0,
|
|
input_layer: str = "embed",
|
|
use_output_layer: bool = True,
|
|
normalize_before: bool = True,
|
|
src_attention: bool = True,
|
|
key_bias: bool = True,
|
|
activation_type: str = "relu",
|
|
gradient_checkpointing: bool = False,
|
|
tie_word_embedding: bool = False,
|
|
):
|
|
super().__init__()
|
|
attention_dim = encoder_output_size
|
|
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
|
|
|
self.embed = torch.nn.Sequential(
|
|
torch.nn.Identity() if input_layer == "no_pos" else
|
|
torch.nn.Embedding(vocab_size, attention_dim),
|
|
COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
|
|
positional_dropout_rate),
|
|
)
|
|
|
|
self.normalize_before = normalize_before
|
|
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
|
|
self.use_output_layer = use_output_layer
|
|
if use_output_layer:
|
|
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
|
|
else:
|
|
self.output_layer = torch.nn.Identity()
|
|
self.num_blocks = num_blocks
|
|
self.decoders = torch.nn.ModuleList([
|
|
DecoderLayer(
|
|
attention_dim,
|
|
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
|
attention_heads, attention_dim,
|
|
self_attention_dropout_rate, key_bias),
|
|
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
|
attention_heads, attention_dim, src_attention_dropout_rate,
|
|
key_bias) if src_attention else None,
|
|
PositionwiseFeedForward(attention_dim, linear_units,
|
|
dropout_rate, activation),
|
|
dropout_rate,
|
|
normalize_before,
|
|
) for _ in range(self.num_blocks)
|
|
])
|
|
|
|
self.gradient_checkpointing = gradient_checkpointing
|
|
self.tie_word_embedding = tie_word_embedding
|
|
|
|
def forward(
|
|
self,
|
|
memory: torch.Tensor,
|
|
memory_mask: torch.Tensor,
|
|
ys_in_pad: torch.Tensor,
|
|
ys_in_lens: torch.Tensor,
|
|
r_ys_in_pad: torch.Tensor = torch.empty(0),
|
|
reverse_weight: float = 0.0,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Forward decoder.
|
|
Args:
|
|
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
|
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
|
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
|
ys_in_lens: input lengths of this batch (batch)
|
|
r_ys_in_pad: not used in transformer decoder, in order to unify api
|
|
with bidirectional decoder
|
|
reverse_weight: not used in transformer decoder, in order to unify
|
|
api with bidirectional decode
|
|
Returns:
|
|
(tuple): tuple containing:
|
|
x: decoded token score before softmax (batch, maxlen_out,
|
|
vocab_size) if use_output_layer is True,
|
|
torch.tensor(0.0), in order to unify api with bidirectional decoder
|
|
olens: (batch, )
|
|
NOTE(xcsong):
|
|
We pass the `__call__` method of the modules instead of `forward` to the
|
|
checkpointing API because `__call__` attaches all the hooks of the module.
|
|
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
|
"""
|
|
tgt = ys_in_pad
|
|
maxlen = tgt.size(1)
|
|
# tgt_mask: (B, 1, L)
|
|
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
|
|
tgt_mask = tgt_mask.to(tgt.device)
|
|
# m: (1, L, L)
|
|
m = subsequent_mask(tgt_mask.size(-1),
|
|
device=tgt_mask.device).unsqueeze(0)
|
|
# tgt_mask: (B, L, L)
|
|
tgt_mask = tgt_mask & m
|
|
x, _ = self.embed(tgt)
|
|
if self.gradient_checkpointing and self.training:
|
|
x = self.forward_layers_checkpointed(x, tgt_mask, memory,
|
|
memory_mask)
|
|
else:
|
|
x = self.forward_layers(x, tgt_mask, memory, memory_mask)
|
|
if self.normalize_before:
|
|
x = self.after_norm(x)
|
|
if self.use_output_layer:
|
|
x = self.output_layer(x)
|
|
olens = tgt_mask.sum(1)
|
|
return x, torch.tensor(0.0), olens
|
|
|
|
def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
|
|
memory: torch.Tensor,
|
|
memory_mask: torch.Tensor) -> torch.Tensor:
|
|
for layer in self.decoders:
|
|
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
|
|
memory_mask)
|
|
return x
|
|
|
|
@torch.jit.unused
|
|
def forward_layers_checkpointed(self, x: torch.Tensor,
|
|
tgt_mask: torch.Tensor,
|
|
memory: torch.Tensor,
|
|
memory_mask: torch.Tensor) -> torch.Tensor:
|
|
for layer in self.decoders:
|
|
x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
|
|
layer.__call__, x, tgt_mask, memory, memory_mask)
|
|
return x
|
|
|
|
def forward_one_step(
|
|
self,
|
|
memory: torch.Tensor,
|
|
memory_mask: torch.Tensor,
|
|
tgt: torch.Tensor,
|
|
tgt_mask: torch.Tensor,
|
|
cache: Optional[List[torch.Tensor]] = None,
|
|
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
|
"""Forward one step.
|
|
This is only used for decoding.
|
|
Args:
|
|
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
|
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
|
tgt: input token ids, int64 (batch, maxlen_out)
|
|
tgt_mask: input token mask, (batch, maxlen_out)
|
|
dtype=torch.uint8 in PyTorch 1.2-
|
|
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
|
cache: cached output list of (batch, max_time_out-1, size)
|
|
Returns:
|
|
y, cache: NN output value and cache per `self.decoders`.
|
|
y.shape` is (batch, maxlen_out, token)
|
|
"""
|
|
x, _ = self.embed(tgt)
|
|
new_cache = []
|
|
for i, decoder in enumerate(self.decoders):
|
|
if cache is None:
|
|
c = None
|
|
else:
|
|
c = cache[i]
|
|
x, tgt_mask, memory, memory_mask = decoder(x,
|
|
tgt_mask,
|
|
memory,
|
|
memory_mask,
|
|
cache=c)
|
|
new_cache.append(x)
|
|
if self.normalize_before:
|
|
y = self.after_norm(x[:, -1])
|
|
else:
|
|
y = x[:, -1]
|
|
if self.use_output_layer:
|
|
y = torch.log_softmax(self.output_layer(y), dim=-1)
|
|
return y, new_cache
|
|
|
|
def tie_or_clone_weights(self, jit_mode: bool = True):
|
|
"""Tie or clone module weights (between word_emb and output_layer)
|
|
depending of whether we are using TorchScript or not"""
|
|
if not self.use_output_layer:
|
|
return
|
|
if jit_mode:
|
|
logging.info("clone emb.weight to output.weight")
|
|
self.output_layer.weight = torch.nn.Parameter(
|
|
self.embed[0].weight.clone())
|
|
else:
|
|
logging.info("tie emb.weight with output.weight")
|
|
self.output_layer.weight = self.embed[0].weight
|
|
|
|
if getattr(self.output_layer, "bias", None) is not None:
|
|
self.output_layer.bias.data = torch.nn.functional.pad(
|
|
self.output_layer.bias.data,
|
|
(
|
|
0,
|
|
self.output_layer.weight.shape[0] -
|
|
self.output_layer.bias.shape[0],
|
|
),
|
|
"constant",
|
|
0,
|
|
)
|
|
|
|
|
|
class BiTransformerDecoder(torch.nn.Module):
|
|
"""Base class of Transfomer decoder module.
|
|
Args:
|
|
vocab_size: output dim
|
|
encoder_output_size: dimension of attention
|
|
attention_heads: the number of heads of multi head attention
|
|
linear_units: the hidden units number of position-wise feedforward
|
|
num_blocks: the number of decoder blocks
|
|
r_num_blocks: the number of right to left decoder blocks
|
|
dropout_rate: dropout rate
|
|
self_attention_dropout_rate: dropout rate for attention
|
|
input_layer: input layer type
|
|
use_output_layer: whether to use output layer
|
|
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
|
normalize_before:
|
|
True: use layer_norm before each sub-block of a layer.
|
|
False: use layer_norm after each sub-block of a layer.
|
|
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size: int,
|
|
encoder_output_size: int,
|
|
attention_heads: int = 4,
|
|
linear_units: int = 2048,
|
|
num_blocks: int = 6,
|
|
r_num_blocks: int = 0,
|
|
dropout_rate: float = 0.1,
|
|
positional_dropout_rate: float = 0.1,
|
|
self_attention_dropout_rate: float = 0.0,
|
|
src_attention_dropout_rate: float = 0.0,
|
|
input_layer: str = "embed",
|
|
use_output_layer: bool = True,
|
|
normalize_before: bool = True,
|
|
key_bias: bool = True,
|
|
gradient_checkpointing: bool = False,
|
|
tie_word_embedding: bool = False,
|
|
):
|
|
|
|
super().__init__()
|
|
self.tie_word_embedding = tie_word_embedding
|
|
self.left_decoder = TransformerDecoder(
|
|
vocab_size,
|
|
encoder_output_size,
|
|
attention_heads,
|
|
linear_units,
|
|
num_blocks,
|
|
dropout_rate,
|
|
positional_dropout_rate,
|
|
self_attention_dropout_rate,
|
|
src_attention_dropout_rate,
|
|
input_layer,
|
|
use_output_layer,
|
|
normalize_before,
|
|
key_bias=key_bias,
|
|
gradient_checkpointing=gradient_checkpointing,
|
|
tie_word_embedding=tie_word_embedding)
|
|
|
|
self.right_decoder = TransformerDecoder(
|
|
vocab_size,
|
|
encoder_output_size,
|
|
attention_heads,
|
|
linear_units,
|
|
r_num_blocks,
|
|
dropout_rate,
|
|
positional_dropout_rate,
|
|
self_attention_dropout_rate,
|
|
src_attention_dropout_rate,
|
|
input_layer,
|
|
use_output_layer,
|
|
normalize_before,
|
|
key_bias=key_bias,
|
|
gradient_checkpointing=gradient_checkpointing,
|
|
tie_word_embedding=tie_word_embedding)
|
|
|
|
def forward(
|
|
self,
|
|
memory: torch.Tensor,
|
|
memory_mask: torch.Tensor,
|
|
ys_in_pad: torch.Tensor,
|
|
ys_in_lens: torch.Tensor,
|
|
r_ys_in_pad: torch.Tensor,
|
|
reverse_weight: float = 0.0,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Forward decoder.
|
|
Args:
|
|
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
|
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
|
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
|
ys_in_lens: input lengths of this batch (batch)
|
|
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
|
|
used for right to left decoder
|
|
reverse_weight: used for right to left decoder
|
|
Returns:
|
|
(tuple): tuple containing:
|
|
x: decoded token score before softmax (batch, maxlen_out,
|
|
vocab_size) if use_output_layer is True,
|
|
r_x: x: decoded token score (right to left decoder)
|
|
before softmax (batch, maxlen_out, vocab_size)
|
|
if use_output_layer is True,
|
|
olens: (batch, )
|
|
"""
|
|
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
|
|
ys_in_lens)
|
|
r_x = torch.tensor(0.0)
|
|
if reverse_weight > 0.0:
|
|
r_x, _, olens = self.right_decoder(memory, memory_mask,
|
|
r_ys_in_pad, ys_in_lens)
|
|
return l_x, r_x, olens
|
|
|
|
def forward_one_step(
|
|
self,
|
|
memory: torch.Tensor,
|
|
memory_mask: torch.Tensor,
|
|
tgt: torch.Tensor,
|
|
tgt_mask: torch.Tensor,
|
|
cache: Optional[List[torch.Tensor]] = None,
|
|
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
|
"""Forward one step.
|
|
This is only used for decoding.
|
|
Args:
|
|
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
|
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
|
tgt: input token ids, int64 (batch, maxlen_out)
|
|
tgt_mask: input token mask, (batch, maxlen_out)
|
|
dtype=torch.uint8 in PyTorch 1.2-
|
|
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
|
cache: cached output list of (batch, max_time_out-1, size)
|
|
Returns:
|
|
y, cache: NN output value and cache per `self.decoders`.
|
|
y.shape` is (batch, maxlen_out, token)
|
|
"""
|
|
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
|
|
tgt_mask, cache)
|
|
|
|
def tie_or_clone_weights(self, jit_mode: bool = True):
|
|
"""Tie or clone module weights (between word_emb and output_layer)
|
|
depending of whether we are using TorchScript or not"""
|
|
self.left_decoder.tie_or_clone_weights(jit_mode)
|
|
self.right_decoder.tie_or_clone_weights(jit_mode)
|