222 lines
8.7 KiB
Python
222 lines
8.7 KiB
Python
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import pack, rearrange, repeat
|
|
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
|
from matcha.models.components.transformer import BasicTransformerBlock
|
|
|
|
|
|
class ConditionalDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
channels=(256, 256),
|
|
dropout=0.05,
|
|
attention_head_dim=64,
|
|
n_blocks=1,
|
|
num_mid_blocks=2,
|
|
num_heads=4,
|
|
act_fn="snake",
|
|
):
|
|
"""
|
|
This decoder requires an input with the same shape of the target. So, if your text content
|
|
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
|
"""
|
|
super().__init__()
|
|
channels = tuple(channels)
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
|
|
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
|
time_embed_dim = channels[0] * 4
|
|
self.time_mlp = TimestepEmbedding(
|
|
in_channels=in_channels,
|
|
time_embed_dim=time_embed_dim,
|
|
act_fn="silu",
|
|
)
|
|
self.down_blocks = nn.ModuleList([])
|
|
self.mid_blocks = nn.ModuleList([])
|
|
self.up_blocks = nn.ModuleList([])
|
|
|
|
output_channel = in_channels
|
|
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
|
input_channel = output_channel
|
|
output_channel = channels[i]
|
|
is_last = i == len(channels) - 1
|
|
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
dim=output_channel,
|
|
num_attention_heads=num_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
dropout=dropout,
|
|
activation_fn=act_fn,
|
|
)
|
|
for _ in range(n_blocks)
|
|
]
|
|
)
|
|
downsample = (
|
|
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
)
|
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
|
|
|
for _ in range(num_mid_blocks):
|
|
input_channel = channels[-1]
|
|
out_channels = channels[-1]
|
|
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
|
|
transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
dim=output_channel,
|
|
num_attention_heads=num_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
dropout=dropout,
|
|
activation_fn=act_fn,
|
|
)
|
|
for _ in range(n_blocks)
|
|
]
|
|
)
|
|
|
|
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
|
|
|
channels = channels[::-1] + (channels[0],)
|
|
for i in range(len(channels) - 1):
|
|
input_channel = channels[i] * 2
|
|
output_channel = channels[i + 1]
|
|
is_last = i == len(channels) - 2
|
|
resnet = ResnetBlock1D(
|
|
dim=input_channel,
|
|
dim_out=output_channel,
|
|
time_emb_dim=time_embed_dim,
|
|
)
|
|
transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
dim=output_channel,
|
|
num_attention_heads=num_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
dropout=dropout,
|
|
activation_fn=act_fn,
|
|
)
|
|
for _ in range(n_blocks)
|
|
]
|
|
)
|
|
upsample = (
|
|
Upsample1D(output_channel, use_conv_transpose=True)
|
|
if not is_last
|
|
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
)
|
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
|
self.final_block = Block1D(channels[-1], channels[-1])
|
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
|
self.initialize_weights()
|
|
|
|
def initialize_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv1d):
|
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.GroupNorm):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
|
"""Forward pass of the UNet1DConditional model.
|
|
|
|
Args:
|
|
x (torch.Tensor): shape (batch_size, in_channels, time)
|
|
mask (_type_): shape (batch_size, 1, time)
|
|
t (_type_): shape (batch_size)
|
|
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
|
cond (_type_, optional): placeholder for future use. Defaults to None.
|
|
|
|
Raises:
|
|
ValueError: _description_
|
|
ValueError: _description_
|
|
|
|
Returns:
|
|
_type_: _description_
|
|
"""
|
|
|
|
t = self.time_embeddings(t).to(t.dtype)
|
|
t = self.time_mlp(t)
|
|
|
|
x = pack([x, mu], "b * t")[0]
|
|
|
|
if spks is not None:
|
|
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
|
x = pack([x, spks], "b * t")[0]
|
|
if cond is not None:
|
|
x = pack([x, cond], "b * t")[0]
|
|
|
|
hiddens = []
|
|
masks = [mask]
|
|
for resnet, transformer_blocks, downsample in self.down_blocks:
|
|
mask_down = masks[-1]
|
|
x = resnet(x, mask_down, t)
|
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
|
for transformer_block in transformer_blocks:
|
|
x = transformer_block(
|
|
hidden_states=x,
|
|
attention_mask=attn_mask,
|
|
timestep=t,
|
|
)
|
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
hiddens.append(x) # Save hidden states for skip connections
|
|
x = downsample(x * mask_down)
|
|
masks.append(mask_down[:, :, ::2])
|
|
masks = masks[:-1]
|
|
mask_mid = masks[-1]
|
|
|
|
for resnet, transformer_blocks in self.mid_blocks:
|
|
x = resnet(x, mask_mid, t)
|
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
|
for transformer_block in transformer_blocks:
|
|
x = transformer_block(
|
|
hidden_states=x,
|
|
attention_mask=attn_mask,
|
|
timestep=t,
|
|
)
|
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
|
|
for resnet, transformer_blocks, upsample in self.up_blocks:
|
|
mask_up = masks.pop()
|
|
skip = hiddens.pop()
|
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
|
x = resnet(x, mask_up, t)
|
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
|
for transformer_block in transformer_blocks:
|
|
x = transformer_block(
|
|
hidden_states=x,
|
|
attention_mask=attn_mask,
|
|
timestep=t,
|
|
)
|
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
x = upsample(x * mask_up)
|
|
x = self.final_block(x, mask_up)
|
|
output = self.final_proj(x * mask_up)
|
|
return output * mask
|