llm-asr-tts/13_SenceVoice_QWen2.5_edgeTTS_realTime.py
LIRUI ad1fee9c4b
Some checks failed
Lint / quick-checks (push) Has been cancelled
Lint / flake8-py3 (push) Has been cancelled
Close inactive issues / close-issues (push) Failing after 2s
first commit
2025-03-17 00:41:41 +08:00

312 lines
9.4 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import cv2
import pyaudio
import wave
import threading
import numpy as np
import time
from queue import Queue
import webrtcvad
import os
import threading
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from transformers import AutoModelForCausalLM, AutoTokenizer
from qwen_vl_utils import process_vision_info
import torch
from funasr import AutoModel
import pygame
import edge_tts
import asyncio
from time import sleep
import langid
from langdetect import detect
# --- 配置huggingFace国内镜像 ---
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 参数设置
AUDIO_RATE = 16000 # 音频采样率
AUDIO_CHANNELS = 1 # 单声道
CHUNK = 1024 # 音频块大小
VAD_MODE = 3 # VAD 模式 (0-3, 数字越大越敏感)
OUTPUT_DIR = "./output" # 输出目录
NO_SPEECH_THRESHOLD = 1 # 无效语音阈值,单位:秒
folder_path = "./Test_QWen2_VL/"
audio_file_count = 0
# 确保输出目录存在
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(folder_path, exist_ok=True)
# 队列用于音频和视频同步缓存
audio_queue = Queue()
video_queue = Queue()
# 全局变量
last_active_time = time.time()
recording_active = True
segments_to_save = []
saved_intervals = []
last_vad_end_time = 0 # 上次保存的 VAD 有效段结束时间
# 初始化 WebRTC VAD
vad = webrtcvad.Vad()
vad.set_mode(VAD_MODE)
# 音频录制线程
def audio_recorder():
global audio_queue, recording_active, last_active_time, segments_to_save, last_vad_end_time
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16,
channels=AUDIO_CHANNELS,
rate=AUDIO_RATE,
input=True,
frames_per_buffer=CHUNK)
audio_buffer = []
print("音频录制已开始")
while recording_active:
data = stream.read(CHUNK)
audio_buffer.append(data)
# 每 0.5 秒检测一次 VAD
if len(audio_buffer) * CHUNK / AUDIO_RATE >= 0.5:
# 拼接音频数据并检测 VAD
raw_audio = b''.join(audio_buffer)
vad_result = check_vad_activity(raw_audio)
if vad_result:
print("检测到语音活动")
last_active_time = time.time()
segments_to_save.append((raw_audio, time.time()))
else:
print("静音中...")
audio_buffer = [] # 清空缓冲区
# 检查无效语音时间
if time.time() - last_active_time > NO_SPEECH_THRESHOLD:
# 检查是否需要保存
if segments_to_save and segments_to_save[-1][1] > last_vad_end_time:
save_audio_video()
last_active_time = time.time()
else:
pass
# print("无新增语音段,跳过保存")
stream.stop_stream()
stream.close()
p.terminate()
# 视频录制线程
def video_recorder():
global video_queue, recording_active
cap = cv2.VideoCapture(0) # 使用默认摄像头
print("视频录制已开始")
while recording_active:
ret, frame = cap.read()
if ret:
video_queue.put((frame, time.time()))
# 实时显示摄像头画面
cv2.imshow("Real Camera", frame)
if cv2.waitKey(1) & 0xFF == ord('q'): # 按 Q 键退出
break
else:
print("无法获取摄像头画面")
cap.release()
cv2.destroyAllWindows()
# 检测 VAD 活动
def check_vad_activity(audio_data):
# 将音频数据分块检测
num, rate = 0, 0.4
step = int(AUDIO_RATE * 0.02) # 20ms 块大小
flag_rate = round(rate * len(audio_data) // step)
for i in range(0, len(audio_data), step):
chunk = audio_data[i:i + step]
if len(chunk) == step:
if vad.is_speech(chunk, sample_rate=AUDIO_RATE):
num += 1
if num > flag_rate:
return True
return False
# 保存音频和视频
def save_audio_video():
pygame.mixer.init()
global segments_to_save, video_queue, last_vad_end_time, saved_intervals
# 全局变量,用于保存音频文件名计数
global audio_file_count
audio_file_count += 1
audio_output_path = f"{OUTPUT_DIR}/audio_{audio_file_count}.wav"
# audio_output_path = f"{OUTPUT_DIR}/audio_0.wav"
if not segments_to_save:
return
# 停止当前播放的音频
if pygame.mixer.music.get_busy():
pygame.mixer.music.stop()
print("检测到新的有效音,已停止当前音频播放")
# 获取有效段的时间范围
start_time = segments_to_save[0][1]
end_time = segments_to_save[-1][1]
# 检查是否与之前的片段重叠
if saved_intervals and saved_intervals[-1][1] >= start_time:
print("当前片段与之前片段重叠,跳过保存")
segments_to_save.clear()
return
# 保存音频
audio_frames = [seg[0] for seg in segments_to_save]
wf = wave.open(audio_output_path, 'wb')
wf.setnchannels(AUDIO_CHANNELS)
wf.setsampwidth(2) # 16-bit PCM
wf.setframerate(AUDIO_RATE)
wf.writeframes(b''.join(audio_frames))
wf.close()
print(f"音频保存至 {audio_output_path}")
# Inference()
# 使用线程执行推理
inference_thread = threading.Thread(target=Inference, args=(audio_output_path,))
inference_thread.start()
# 记录保存的区间
saved_intervals.append((start_time, end_time))
# 清空缓冲区
segments_to_save.clear()
# --- 播放音频 -
def play_audio(file_path):
try:
pygame.mixer.init()
pygame.mixer.music.load(file_path)
pygame.mixer.music.play()
while pygame.mixer.music.get_busy():
time.sleep(1) # 等待音频播放结束
print("播放完成!")
except Exception as e:
print(f"播放失败: {e}")
finally:
pygame.mixer.quit()
async def amain(TEXT, VOICE, OUTPUT_FILE) -> None:
"""Main function"""
communicate = edge_tts.Communicate(TEXT, VOICE)
await communicate.save(OUTPUT_FILE)
# -------- SenceVoice 语音识别 --模型加载-----
model_dir = r"D:\AI\download\SenseVoiceSmall"
model_senceVoice = AutoModel( model=model_dir, trust_remote_code=True, )
# --- QWen2.5大语言模型 ---
model_name = r"D:\AI\download\Qwen2.5-1.5B-Instruct"
# model_name = r'D:\AI\download\Qwen2.5-7B-Instruct-GPTQ-Int4'
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def Inference(TEMP_AUDIO_FILE=f"{OUTPUT_DIR}/audio_0.wav"):
# -------- SenceVoice 推理 ---------
input_file = (TEMP_AUDIO_FILE)
res = model_senceVoice.generate(
input=input_file,
cache={},
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
use_itn=False,
)
# prompt = res[0]['text'].split(">")[-1]
prompt = res[0]['text'].split(">")[-1] #识别结果
print("ASR OUT:", prompt)
# ---------SenceVoice --end----------
# -------- 模型推理阶段将语音识别结果作为大模型Prompt ------
messages = [
{"role": "system", "content": "你叫千问是一个18岁的女大学生性格活泼开朗说话俏皮"},
{"role": "user", "content": prompt},
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
output_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print("answer", output_text)
# 输入文本
text = output_text
# 语种识别 -- langid
language, confidence = langid.classify(text)
# 语种识别 -- langdetect
# language = detect(text).split("-")[0]
language_speaker = {
"ja" : "ja-JP-NanamiNeural", # ok
"fr" : "fr-FR-DeniseNeural", # ok
"es" : "ca-ES-JoanaNeural", # ok
"de" : "de-DE-KatjaNeural", # ok
"zh" : "zh-CN-XiaoyiNeural", # ok
"en" : "en-US-AnaNeural", # ok
}
if language not in language_speaker.keys():
used_speaker = "zh-CN-XiaoyiNeural"
else:
used_speaker = language_speaker[language]
print("检测到语种:", language, "使用音色:", language_speaker[language])
global audio_file_count
asyncio.run(amain(text, used_speaker, os.path.join(folder_path,f"sft_{audio_file_count}.mp3")))
play_audio(f'{folder_path}/sft_{audio_file_count}.mp3')
# 主函数
if __name__ == "__main__":
try:
# 启动音视频录制线程
audio_thread = threading.Thread(target=audio_recorder)
# video_thread = threading.Thread(target=video_recorder)
audio_thread.start()
# video_thread.start()
print("按 Ctrl+C 停止录制")
while True:
time.sleep(1)
except KeyboardInterrupt:
print("录制停止中...")
recording_active = False
audio_thread.join()
# video_thread.join()
print("录制已停止")