mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
ef90e9c376
The models are modified in place before being used and unpatched after. I think this is better than monkeypatching since it might make it easier to use faster non pytorch unet inference in the future.
488 lines
18 KiB
Python
488 lines
18 KiB
Python
import torch
|
|
|
|
import os
|
|
import sys
|
|
import json
|
|
import hashlib
|
|
import copy
|
|
|
|
from PIL import Image
|
|
from PIL.PngImagePlugin import PngInfo
|
|
import numpy as np
|
|
|
|
sys.path.append(os.path.join(sys.path[0], "comfy"))
|
|
|
|
|
|
import comfy.samplers
|
|
import comfy.sd
|
|
|
|
supported_ckpt_extensions = ['.ckpt']
|
|
supported_pt_extensions = ['.ckpt', '.pt']
|
|
try:
|
|
import safetensors.torch
|
|
supported_ckpt_extensions += ['.safetensors']
|
|
supported_pt_extensions += ['.safetensors']
|
|
except:
|
|
print("Could not import safetensors, safetensors support disabled.")
|
|
|
|
def filter_files_extensions(files, extensions):
|
|
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))
|
|
|
|
class CLIPTextEncode:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def encode(self, clip, text):
|
|
return ([[clip.encode(text), {}]], )
|
|
|
|
class ConditioningCombine:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "combine"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def combine(self, conditioning_1, conditioning_2):
|
|
return (conditioning_1 + conditioning_2, )
|
|
|
|
class ConditioningSetArea:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
|
|
"height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
|
|
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
|
|
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "append"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
|
|
c = copy.deepcopy(conditioning)
|
|
for t in c:
|
|
t[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
|
|
t[1]['strength'] = strength
|
|
t[1]['min_sigma'] = min_sigma
|
|
t[1]['max_sigma'] = max_sigma
|
|
return (c, )
|
|
|
|
class VAEDecode:
|
|
def __init__(self, device="cpu"):
|
|
self.device = device
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "decode"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def decode(self, vae, samples):
|
|
return (vae.decode(samples), )
|
|
|
|
class VAEEncode:
|
|
def __init__(self, device="cpu"):
|
|
self.device = device
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def encode(self, vae, pixels):
|
|
x = (pixels.shape[1] // 64) * 64
|
|
y = (pixels.shape[2] // 64) * 64
|
|
if pixels.shape[1] != x or pixels.shape[2] != y:
|
|
pixels = pixels[:,:x,:y,:]
|
|
return (vae.encode(pixels), )
|
|
|
|
class CheckpointLoader:
|
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
|
config_dir = os.path.join(models_dir, "configs")
|
|
ckpt_dir = os.path.join(models_dir, "checkpoints")
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "config_name": (filter_files_extensions(os.listdir(s.config_dir), '.yaml'), ),
|
|
"ckpt_name": (filter_files_extensions(os.listdir(s.ckpt_dir), supported_ckpt_extensions), )}}
|
|
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
|
FUNCTION = "load_checkpoint"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
|
|
config_path = os.path.join(self.config_dir, config_name)
|
|
ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
|
|
embedding_directory = os.path.join(self.models_dir, "embeddings")
|
|
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=embedding_directory)
|
|
|
|
class LoraLoader:
|
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
|
lora_dir = os.path.join(models_dir, "loras")
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"clip": ("CLIP", ),
|
|
"lora_name": (filter_files_extensions(os.listdir(s.lora_dir), supported_pt_extensions), ),
|
|
"strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL", "CLIP")
|
|
FUNCTION = "load_lora"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
|
|
lora_path = os.path.join(self.lora_dir, lora_name)
|
|
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
|
|
return (model_lora, clip_lora)
|
|
|
|
class VAELoader:
|
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
|
vae_dir = os.path.join(models_dir, "vae")
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "vae_name": (filter_files_extensions(os.listdir(s.vae_dir), supported_pt_extensions), )}}
|
|
RETURN_TYPES = ("VAE",)
|
|
FUNCTION = "load_vae"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
#TODO: scale factor?
|
|
def load_vae(self, vae_name):
|
|
vae_path = os.path.join(self.vae_dir, vae_name)
|
|
vae = comfy.sd.VAE(ckpt_path=vae_path)
|
|
return (vae,)
|
|
|
|
class EmptyLatentImage:
|
|
def __init__(self, device="cpu"):
|
|
self.device = device
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
|
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "generate"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def generate(self, width, height, batch_size=1):
|
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
|
return (latent, )
|
|
|
|
class LatentUpscale:
|
|
upscale_methods = ["nearest-exact", "bilinear", "area"]
|
|
crop_methods = ["disabled", "center"]
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
|
|
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
|
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
|
|
"crop": (s.crop_methods,)}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "upscale"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def upscale(self, samples, upscale_method, width, height, crop):
|
|
if crop == "center":
|
|
old_width = samples.shape[3]
|
|
old_height = samples.shape[2]
|
|
old_aspect = old_width / old_height
|
|
new_aspect = width / height
|
|
x = 0
|
|
y = 0
|
|
if old_aspect > new_aspect:
|
|
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
|
|
elif old_aspect < new_aspect:
|
|
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
|
|
s = samples[:,:,y:old_height-y,x:old_width-x]
|
|
else:
|
|
s = samples
|
|
s = torch.nn.functional.interpolate(s, size=(height // 8, width // 8), mode=upscale_method)
|
|
return (s,)
|
|
|
|
class LatentRotate:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "rotate"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def rotate(self, samples, rotation):
|
|
rotate_by = 0
|
|
if rotation.startswith("90"):
|
|
rotate_by = 1
|
|
elif rotation.startswith("180"):
|
|
rotate_by = 2
|
|
elif rotation.startswith("270"):
|
|
rotate_by = 3
|
|
|
|
s = torch.rot90(samples, k=rotate_by, dims=[3, 2])
|
|
return (s,)
|
|
|
|
class LatentFlip:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "flip"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def flip(self, samples, flip_method):
|
|
if flip_method.startswith("x"):
|
|
s = torch.flip(samples, dims=[2])
|
|
elif flip_method.startswith("y"):
|
|
s = torch.flip(samples, dims=[3])
|
|
else:
|
|
s = samples
|
|
|
|
return (s,)
|
|
|
|
class LatentComposite:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples_to": ("LATENT",),
|
|
"samples_from": ("LATENT",),
|
|
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
|
|
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "composite"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def composite(self, samples_to, samples_from, x, y, composite_method="normal"):
|
|
x = x // 8
|
|
y = y // 8
|
|
s = samples_to.clone()
|
|
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
|
return (s,)
|
|
|
|
def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
|
if disable_noise:
|
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
|
else:
|
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
|
|
|
|
try:
|
|
real_model = model.patch_model()
|
|
real_model.to(device)
|
|
noise = noise.to(device)
|
|
latent_image = latent_image.to(device)
|
|
|
|
positive_copy = []
|
|
negative_copy = []
|
|
|
|
for p in positive:
|
|
t = p[0]
|
|
if t.shape[0] < noise.shape[0]:
|
|
t = torch.cat([t] * noise.shape[0])
|
|
t = t.to(device)
|
|
positive_copy += [[t] + p[1:]]
|
|
for n in negative:
|
|
t = n[0]
|
|
if t.shape[0] < noise.shape[0]:
|
|
t = torch.cat([t] * noise.shape[0])
|
|
t = t.to(device)
|
|
negative_copy += [[t] + n[1:]]
|
|
|
|
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
|
|
else:
|
|
#other samplers
|
|
pass
|
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise)
|
|
samples = samples.cpu()
|
|
real_model.cpu()
|
|
model.unpatch_model()
|
|
except Exception as e:
|
|
real_model.cpu()
|
|
model.unpatch_model()
|
|
raise e
|
|
|
|
return (samples, )
|
|
|
|
class KSampler:
|
|
def __init__(self, device="cuda"):
|
|
self.device = device
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"model": ("MODEL",),
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
|
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
|
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
|
|
"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"latent_image": ("LATENT", ),
|
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "sample"
|
|
|
|
CATEGORY = "sampling"
|
|
|
|
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
|
|
return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
|
|
|
|
class KSamplerAdvanced:
|
|
def __init__(self, device="cuda"):
|
|
self.device = device
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"model": ("MODEL",),
|
|
"add_noise": (["enable", "disable"], ),
|
|
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
|
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
|
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
|
|
"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"latent_image": ("LATENT", ),
|
|
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
|
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
|
|
"return_with_leftover_noise": (["disable", "enable"], ),
|
|
}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "sample"
|
|
|
|
CATEGORY = "sampling"
|
|
|
|
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
|
|
force_full_denoise = True
|
|
if return_with_leftover_noise == "enable":
|
|
force_full_denoise = False
|
|
disable_noise = False
|
|
if add_noise == "disable":
|
|
disable_noise = True
|
|
return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
|
|
|
|
class SaveImage:
|
|
def __init__(self):
|
|
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"images": ("IMAGE", ),
|
|
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save_images"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "image"
|
|
|
|
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
|
def map_filename(filename):
|
|
prefix_len = len(filename_prefix)
|
|
prefix = filename[:prefix_len + 1]
|
|
try:
|
|
digits = int(filename[prefix_len + 1:].split('_')[0])
|
|
except:
|
|
digits = 0
|
|
return (digits, prefix)
|
|
try:
|
|
counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
|
|
except ValueError:
|
|
counter = 1
|
|
for image in images:
|
|
i = 255. * image.cpu().numpy()
|
|
img = Image.fromarray(i.astype(np.uint8))
|
|
metadata = PngInfo()
|
|
if prompt is not None:
|
|
metadata.add_text("prompt", json.dumps(prompt))
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
|
img.save(f"output/{filename_prefix}_{counter:05}_.png", pnginfo=metadata, optimize=True)
|
|
counter += 1
|
|
|
|
class LoadImage:
|
|
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"image": (os.listdir(s.input_dir), )},
|
|
}
|
|
|
|
CATEGORY = "image"
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "load_image"
|
|
def load_image(self, image):
|
|
image_path = os.path.join(self.input_dir, image)
|
|
image = Image.open(image_path).convert("RGB")
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = torch.from_numpy(image[None])[None,]
|
|
return image
|
|
|
|
@classmethod
|
|
def IS_CHANGED(s, image):
|
|
image_path = os.path.join(s.input_dir, image)
|
|
m = hashlib.sha256()
|
|
with open(image_path, 'rb') as f:
|
|
m.update(f.read())
|
|
return m.digest().hex()
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"KSampler": KSampler,
|
|
"CheckpointLoader": CheckpointLoader,
|
|
"CLIPTextEncode": CLIPTextEncode,
|
|
"VAEDecode": VAEDecode,
|
|
"VAEEncode": VAEEncode,
|
|
"VAELoader": VAELoader,
|
|
"EmptyLatentImage": EmptyLatentImage,
|
|
"LatentUpscale": LatentUpscale,
|
|
"SaveImage": SaveImage,
|
|
"LoadImage": LoadImage,
|
|
"ConditioningCombine": ConditioningCombine,
|
|
"ConditioningSetArea": ConditioningSetArea,
|
|
"KSamplerAdvanced": KSamplerAdvanced,
|
|
"LatentComposite": LatentComposite,
|
|
"LatentRotate": LatentRotate,
|
|
"LatentFlip": LatentFlip,
|
|
"LoraLoader": LoraLoader,
|
|
}
|
|
|
|
|