mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 10:25:16 +00:00
e946667216
Commented out the masking related code because it is never used in this implementation.
384 lines
16 KiB
Python
384 lines
16 KiB
Python
# Based on:
|
|
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
|
|
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
|
|
from comfy import model_management
|
|
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, Mlp, timestep_embedding
|
|
from comfy.ldm.modules.attention import optimized_attention
|
|
|
|
if model_management.xformers_enabled():
|
|
import xformers.ops
|
|
if int((xformers.__version__).split(".")[2]) >= 28:
|
|
block_diagonal_mask_from_seqlens = xformers.ops.fmha.attn_bias.BlockDiagonalMask.from_seqlens
|
|
else:
|
|
block_diagonal_mask_from_seqlens = xformers.ops.fmha.BlockDiagonalMask.from_seqlens
|
|
|
|
def modulate(x, shift, scale):
|
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
|
|
|
def t2i_modulate(x, shift, scale):
|
|
return x * (1 + scale) + shift
|
|
|
|
class MultiHeadCrossAttention(nn.Module):
|
|
def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., dtype=None, device=None, operations=None, **kwargs):
|
|
super(MultiHeadCrossAttention, self).__init__()
|
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
|
|
|
self.d_model = d_model
|
|
self.num_heads = num_heads
|
|
self.head_dim = d_model // num_heads
|
|
|
|
self.q_linear = operations.Linear(d_model, d_model, dtype=dtype, device=device)
|
|
self.kv_linear = operations.Linear(d_model, d_model*2, dtype=dtype, device=device)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x, cond, mask=None):
|
|
# query/value: img tokens; key: condition; mask: if padding tokens
|
|
B, N, C = x.shape
|
|
|
|
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
|
|
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
|
|
k, v = kv.unbind(2)
|
|
|
|
assert mask is None # TODO?
|
|
# # TODO: xformers needs separate mask logic here
|
|
# if model_management.xformers_enabled():
|
|
# attn_bias = None
|
|
# if mask is not None:
|
|
# attn_bias = block_diagonal_mask_from_seqlens([N] * B, mask)
|
|
# x = xformers.ops.memory_efficient_attention(q, k, v, p=0, attn_bias=attn_bias)
|
|
# else:
|
|
# q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),)
|
|
# attn_mask = None
|
|
# mask = torch.ones(())
|
|
# if mask is not None and len(mask) > 1:
|
|
# # Create equivalent of xformer diagonal block mask, still only correct for square masks
|
|
# # But depth doesn't matter as tensors can expand in that dimension
|
|
# attn_mask_template = torch.ones(
|
|
# [q.shape[2] // B, mask[0]],
|
|
# dtype=torch.bool,
|
|
# device=q.device
|
|
# )
|
|
# attn_mask = torch.block_diag(attn_mask_template)
|
|
#
|
|
# # create a mask on the diagonal for each mask in the batch
|
|
# for _ in range(B - 1):
|
|
# attn_mask = torch.block_diag(attn_mask, attn_mask_template)
|
|
# x = optimized_attention(q, k, v, self.num_heads, mask=attn_mask, skip_reshape=True)
|
|
|
|
x = optimized_attention(q.view(B, -1, C), k.view(B, -1, C), v.view(B, -1, C), self.num_heads, mask=None)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class AttentionKVCompress(nn.Module):
|
|
"""Multi-head Attention block with KV token compression and qk norm."""
|
|
def __init__(self, dim, num_heads=8, qkv_bias=True, sampling='conv', sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **kwargs):
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads.
|
|
qkv_bias (bool: If True, add a learnable bias to query, key, value.
|
|
"""
|
|
super().__init__()
|
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim // num_heads
|
|
self.scale = self.head_dim ** -0.5
|
|
|
|
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
|
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
|
|
|
self.sampling=sampling # ['conv', 'ave', 'uniform', 'uniform_every']
|
|
self.sr_ratio = sr_ratio
|
|
if sr_ratio > 1 and sampling == 'conv':
|
|
# Avg Conv Init.
|
|
self.sr = operations.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio, dtype=dtype, device=device)
|
|
# self.sr.weight.data.fill_(1/sr_ratio**2)
|
|
# self.sr.bias.data.zero_()
|
|
self.norm = operations.LayerNorm(dim, dtype=dtype, device=device)
|
|
if qk_norm:
|
|
self.q_norm = operations.LayerNorm(dim, dtype=dtype, device=device)
|
|
self.k_norm = operations.LayerNorm(dim, dtype=dtype, device=device)
|
|
else:
|
|
self.q_norm = nn.Identity()
|
|
self.k_norm = nn.Identity()
|
|
|
|
def downsample_2d(self, tensor, H, W, scale_factor, sampling=None):
|
|
if sampling is None or scale_factor == 1:
|
|
return tensor
|
|
B, N, C = tensor.shape
|
|
|
|
if sampling == 'uniform_every':
|
|
return tensor[:, ::scale_factor], int(N // scale_factor)
|
|
|
|
tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2)
|
|
new_H, new_W = int(H / scale_factor), int(W / scale_factor)
|
|
new_N = new_H * new_W
|
|
|
|
if sampling == 'ave':
|
|
tensor = F.interpolate(
|
|
tensor, scale_factor=1 / scale_factor, mode='nearest'
|
|
).permute(0, 2, 3, 1)
|
|
elif sampling == 'uniform':
|
|
tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1)
|
|
elif sampling == 'conv':
|
|
tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1)
|
|
tensor = self.norm(tensor)
|
|
else:
|
|
raise ValueError
|
|
|
|
return tensor.reshape(B, new_N, C).contiguous(), new_N
|
|
|
|
def forward(self, x, mask=None, HW=None, block_id=None):
|
|
B, N, C = x.shape # 2 4096 1152
|
|
new_N = N
|
|
if HW is None:
|
|
H = W = int(N ** 0.5)
|
|
else:
|
|
H, W = HW
|
|
qkv = self.qkv(x).reshape(B, N, 3, C)
|
|
|
|
q, k, v = qkv.unbind(2)
|
|
dtype = q.dtype
|
|
q = self.q_norm(q)
|
|
k = self.k_norm(k)
|
|
|
|
# KV compression
|
|
if self.sr_ratio > 1:
|
|
k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling)
|
|
v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling)
|
|
|
|
q = q.reshape(B, N, self.num_heads, C // self.num_heads)
|
|
k = k.reshape(B, new_N, self.num_heads, C // self.num_heads)
|
|
v = v.reshape(B, new_N, self.num_heads, C // self.num_heads)
|
|
|
|
if mask is not None:
|
|
raise NotImplementedError("Attn mask logic not added for self attention")
|
|
|
|
# This is never called at the moment
|
|
# attn_bias = None
|
|
# if mask is not None:
|
|
# attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device)
|
|
# attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf'))
|
|
|
|
# attention 2
|
|
q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),)
|
|
x = optimized_attention(q, k, v, self.num_heads, mask=None, skip_reshape=True)
|
|
|
|
x = x.view(B, N, C)
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class FinalLayer(nn.Module):
|
|
"""
|
|
The final layer of PixArt.
|
|
"""
|
|
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)
|
|
)
|
|
|
|
def forward(self, x, c):
|
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
|
x = modulate(self.norm_final(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
class T2IFinalLayer(nn.Module):
|
|
"""
|
|
The final layer of PixArt.
|
|
"""
|
|
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
|
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5)
|
|
self.out_channels = out_channels
|
|
|
|
def forward(self, x, t):
|
|
dtype = x.dtype
|
|
shift, scale = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t[:, None]).chunk(2, dim=1)
|
|
x = t2i_modulate(self.norm_final(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class MaskFinalLayer(nn.Module):
|
|
"""
|
|
The final layer of PixArt.
|
|
"""
|
|
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device)
|
|
)
|
|
def forward(self, x, t):
|
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
|
|
x = modulate(self.norm_final(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class DecoderLayer(nn.Module):
|
|
"""
|
|
The final layer of PixArt.
|
|
"""
|
|
def __init__(self, hidden_size, decoder_hidden_size, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.norm_decoder = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
self.linear = operations.Linear(hidden_size, decoder_hidden_size, bias=True, dtype=dtype, device=device)
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)
|
|
)
|
|
def forward(self, x, t):
|
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
|
|
x = modulate(self.norm_decoder(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class SizeEmbedder(TimestepEmbedder):
|
|
"""
|
|
Embeds scalar timesteps into vector representations.
|
|
"""
|
|
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
|
|
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size, operations=operations)
|
|
self.mlp = nn.Sequential(
|
|
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device),
|
|
nn.SiLU(),
|
|
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
|
|
)
|
|
self.frequency_embedding_size = frequency_embedding_size
|
|
self.outdim = hidden_size
|
|
|
|
def forward(self, s, bs):
|
|
if s.ndim == 1:
|
|
s = s[:, None]
|
|
assert s.ndim == 2
|
|
if s.shape[0] != bs:
|
|
s = s.repeat(bs//s.shape[0], 1)
|
|
assert s.shape[0] == bs
|
|
b, dims = s.shape[0], s.shape[1]
|
|
s = rearrange(s, "b d -> (b d)")
|
|
s_freq = timestep_embedding(s, self.frequency_embedding_size)
|
|
s_emb = self.mlp(s_freq.to(s.dtype))
|
|
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
|
|
return s_emb
|
|
|
|
|
|
class LabelEmbedder(nn.Module):
|
|
"""
|
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
|
"""
|
|
def __init__(self, num_classes, hidden_size, dropout_prob, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
use_cfg_embedding = dropout_prob > 0
|
|
self.embedding_table = operations.Embedding(num_classes + use_cfg_embedding, hidden_size, dtype=dtype, device=device),
|
|
self.num_classes = num_classes
|
|
self.dropout_prob = dropout_prob
|
|
|
|
def token_drop(self, labels, force_drop_ids=None):
|
|
"""
|
|
Drops labels to enable classifier-free guidance.
|
|
"""
|
|
if force_drop_ids is None:
|
|
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob
|
|
else:
|
|
drop_ids = force_drop_ids == 1
|
|
labels = torch.where(drop_ids, self.num_classes, labels)
|
|
return labels
|
|
|
|
def forward(self, labels, train, force_drop_ids=None):
|
|
use_dropout = self.dropout_prob > 0
|
|
if (train and use_dropout) or (force_drop_ids is not None):
|
|
labels = self.token_drop(labels, force_drop_ids)
|
|
embeddings = self.embedding_table(labels)
|
|
return embeddings
|
|
|
|
|
|
class CaptionEmbedder(nn.Module):
|
|
"""
|
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
|
"""
|
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.y_proj = Mlp(
|
|
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer,
|
|
dtype=dtype, device=device, operations=operations,
|
|
)
|
|
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
|
|
self.uncond_prob = uncond_prob
|
|
|
|
def token_drop(self, caption, force_drop_ids=None):
|
|
"""
|
|
Drops labels to enable classifier-free guidance.
|
|
"""
|
|
if force_drop_ids is None:
|
|
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
|
|
else:
|
|
drop_ids = force_drop_ids == 1
|
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
|
|
return caption
|
|
|
|
def forward(self, caption, train, force_drop_ids=None):
|
|
if train:
|
|
assert caption.shape[2:] == self.y_embedding.shape
|
|
use_dropout = self.uncond_prob > 0
|
|
if (train and use_dropout) or (force_drop_ids is not None):
|
|
caption = self.token_drop(caption, force_drop_ids)
|
|
caption = self.y_proj(caption)
|
|
return caption
|
|
|
|
|
|
class CaptionEmbedderDoubleBr(nn.Module):
|
|
"""
|
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
|
"""
|
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.proj = Mlp(
|
|
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer,
|
|
dtype=dtype, device=device, operations=operations,
|
|
)
|
|
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5)
|
|
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5)
|
|
self.uncond_prob = uncond_prob
|
|
|
|
def token_drop(self, global_caption, caption, force_drop_ids=None):
|
|
"""
|
|
Drops labels to enable classifier-free guidance.
|
|
"""
|
|
if force_drop_ids is None:
|
|
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob
|
|
else:
|
|
drop_ids = force_drop_ids == 1
|
|
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption)
|
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
|
|
return global_caption, caption
|
|
|
|
def forward(self, caption, train, force_drop_ids=None):
|
|
assert caption.shape[2: ] == self.y_embedding.shape
|
|
global_caption = caption.mean(dim=2).squeeze()
|
|
use_dropout = self.uncond_prob > 0
|
|
if (train and use_dropout) or (force_drop_ids is not None):
|
|
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids)
|
|
y_embed = self.proj(global_caption)
|
|
return y_embed, caption
|