mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-09 08:47:17 +08:00
72 lines
2.4 KiB
Python
72 lines
2.4 KiB
Python
# TCFG: Tangential Damping Classifier-free Guidance - (arXiv: https://arxiv.org/abs/2503.18137)
|
||
|
||
import torch
|
||
|
||
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
|
||
|
||
|
||
def score_tangential_damping(cond_score: torch.Tensor, uncond_score: torch.Tensor) -> torch.Tensor:
|
||
"""Drop tangential components from uncond score to align with cond score."""
|
||
# (B, 1, ...)
|
||
batch_num = cond_score.shape[0]
|
||
cond_score_flat = cond_score.reshape(batch_num, 1, -1).float()
|
||
uncond_score_flat = uncond_score.reshape(batch_num, 1, -1).float()
|
||
|
||
# Score matrix A (B, 2, ...)
|
||
score_matrix = torch.cat((uncond_score_flat, cond_score_flat), dim=1)
|
||
try:
|
||
_, _, Vh = torch.linalg.svd(score_matrix, full_matrices=False)
|
||
except RuntimeError:
|
||
# Fallback to CPU
|
||
_, _, Vh = torch.linalg.svd(score_matrix.cpu(), full_matrices=False)
|
||
|
||
# Drop the tangential components
|
||
v1 = Vh[:, 0:1, :].to(uncond_score_flat.device) # (B, 1, ...)
|
||
uncond_score_td = (uncond_score_flat @ v1.transpose(-2, -1)) * v1
|
||
return uncond_score_td.reshape_as(uncond_score).to(uncond_score.dtype)
|
||
|
||
|
||
class TCFG(ComfyNodeABC):
|
||
@classmethod
|
||
def INPUT_TYPES(cls) -> InputTypeDict:
|
||
return {
|
||
"required": {
|
||
"model": (IO.MODEL, {}),
|
||
}
|
||
}
|
||
|
||
RETURN_TYPES = (IO.MODEL,)
|
||
RETURN_NAMES = ("patched_model",)
|
||
FUNCTION = "patch"
|
||
|
||
CATEGORY = "advanced/guidance"
|
||
DESCRIPTION = "TCFG – Tangential Damping CFG (2503.18137)\n\nRefine the uncond (negative) to align with the cond (positive) for improving quality."
|
||
|
||
def patch(self, model):
|
||
m = model.clone()
|
||
|
||
def tangential_damping_cfg(args):
|
||
# Assume [cond, uncond, ...]
|
||
x = args["input"]
|
||
conds_out = args["conds_out"]
|
||
if len(conds_out) <= 1 or None in args["conds"][:2]:
|
||
# Skip when either cond or uncond is None
|
||
return conds_out
|
||
cond_pred = conds_out[0]
|
||
uncond_pred = conds_out[1]
|
||
uncond_td = score_tangential_damping(x - cond_pred, x - uncond_pred)
|
||
uncond_pred_td = x - uncond_td
|
||
return [cond_pred, uncond_pred_td] + conds_out[2:]
|
||
|
||
m.set_model_sampler_pre_cfg_function(tangential_damping_cfg)
|
||
return (m,)
|
||
|
||
|
||
NODE_CLASS_MAPPINGS = {
|
||
"TCFG": TCFG,
|
||
}
|
||
|
||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||
"TCFG": "Tangential Damping CFG",
|
||
}
|