mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-12 02:45:16 +00:00
511 lines
22 KiB
Python
511 lines
22 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
|
|
"""
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
from einops import rearrange
|
|
from torch import nn
|
|
from torchvision import transforms
|
|
|
|
from enum import Enum
|
|
import logging
|
|
|
|
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
|
|
|
|
from .blocks import (
|
|
FinalLayer,
|
|
GeneralDITTransformerBlock,
|
|
PatchEmbed,
|
|
TimestepEmbedding,
|
|
Timesteps,
|
|
)
|
|
|
|
from .position_embedding import LearnablePosEmbAxis, VideoRopePosition3DEmb
|
|
|
|
|
|
class DataType(Enum):
|
|
IMAGE = "image"
|
|
VIDEO = "video"
|
|
|
|
|
|
class GeneralDIT(nn.Module):
|
|
"""
|
|
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
|
|
|
|
Args:
|
|
max_img_h (int): Maximum height of the input images.
|
|
max_img_w (int): Maximum width of the input images.
|
|
max_frames (int): Maximum number of frames in the video sequence.
|
|
in_channels (int): Number of input channels (e.g., RGB channels for color images).
|
|
out_channels (int): Number of output channels.
|
|
patch_spatial (tuple): Spatial resolution of patches for input processing.
|
|
patch_temporal (int): Temporal resolution of patches for input processing.
|
|
concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding.
|
|
block_config (str): Configuration of the transformer block. See Notes for supported block types.
|
|
model_channels (int): Base number of channels used throughout the model.
|
|
num_blocks (int): Number of transformer blocks.
|
|
num_heads (int): Number of heads in the multi-head attention layers.
|
|
mlp_ratio (float): Expansion ratio for MLP blocks.
|
|
block_x_format (str): Format of input tensor for transformer blocks ('BTHWD' or 'THWBD').
|
|
crossattn_emb_channels (int): Number of embedding channels for cross-attention.
|
|
use_cross_attn_mask (bool): Whether to use mask in cross-attention.
|
|
pos_emb_cls (str): Type of positional embeddings.
|
|
pos_emb_learnable (bool): Whether positional embeddings are learnable.
|
|
pos_emb_interpolation (str): Method for interpolating positional embeddings.
|
|
affline_emb_norm (bool): Whether to normalize affine embeddings.
|
|
use_adaln_lora (bool): Whether to use AdaLN-LoRA.
|
|
adaln_lora_dim (int): Dimension for AdaLN-LoRA.
|
|
rope_h_extrapolation_ratio (float): Height extrapolation ratio for RoPE.
|
|
rope_w_extrapolation_ratio (float): Width extrapolation ratio for RoPE.
|
|
rope_t_extrapolation_ratio (float): Temporal extrapolation ratio for RoPE.
|
|
extra_per_block_abs_pos_emb (bool): Whether to use extra per-block absolute positional embeddings.
|
|
extra_per_block_abs_pos_emb_type (str): Type of extra per-block positional embeddings.
|
|
extra_h_extrapolation_ratio (float): Height extrapolation ratio for extra embeddings.
|
|
extra_w_extrapolation_ratio (float): Width extrapolation ratio for extra embeddings.
|
|
extra_t_extrapolation_ratio (float): Temporal extrapolation ratio for extra embeddings.
|
|
|
|
Notes:
|
|
Supported block types in block_config:
|
|
* cross_attn, ca: Cross attention
|
|
* full_attn: Full attention on all flattened tokens
|
|
* mlp, ff: Feed forward block
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
max_img_h: int,
|
|
max_img_w: int,
|
|
max_frames: int,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
patch_spatial: tuple,
|
|
patch_temporal: int,
|
|
concat_padding_mask: bool = True,
|
|
# attention settings
|
|
block_config: str = "FA-CA-MLP",
|
|
model_channels: int = 768,
|
|
num_blocks: int = 10,
|
|
num_heads: int = 16,
|
|
mlp_ratio: float = 4.0,
|
|
block_x_format: str = "BTHWD",
|
|
# cross attention settings
|
|
crossattn_emb_channels: int = 1024,
|
|
use_cross_attn_mask: bool = False,
|
|
# positional embedding settings
|
|
pos_emb_cls: str = "sincos",
|
|
pos_emb_learnable: bool = False,
|
|
pos_emb_interpolation: str = "crop",
|
|
affline_emb_norm: bool = False, # whether or not to normalize the affine embedding
|
|
use_adaln_lora: bool = False,
|
|
adaln_lora_dim: int = 256,
|
|
rope_h_extrapolation_ratio: float = 1.0,
|
|
rope_w_extrapolation_ratio: float = 1.0,
|
|
rope_t_extrapolation_ratio: float = 1.0,
|
|
extra_per_block_abs_pos_emb: bool = False,
|
|
extra_per_block_abs_pos_emb_type: str = "sincos",
|
|
extra_h_extrapolation_ratio: float = 1.0,
|
|
extra_w_extrapolation_ratio: float = 1.0,
|
|
extra_t_extrapolation_ratio: float = 1.0,
|
|
image_model=None,
|
|
device=None,
|
|
dtype=None,
|
|
operations=None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.max_img_h = max_img_h
|
|
self.max_img_w = max_img_w
|
|
self.max_frames = max_frames
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.patch_spatial = patch_spatial
|
|
self.patch_temporal = patch_temporal
|
|
self.num_heads = num_heads
|
|
self.num_blocks = num_blocks
|
|
self.model_channels = model_channels
|
|
self.use_cross_attn_mask = use_cross_attn_mask
|
|
self.concat_padding_mask = concat_padding_mask
|
|
# positional embedding settings
|
|
self.pos_emb_cls = pos_emb_cls
|
|
self.pos_emb_learnable = pos_emb_learnable
|
|
self.pos_emb_interpolation = pos_emb_interpolation
|
|
self.affline_emb_norm = affline_emb_norm
|
|
self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio
|
|
self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio
|
|
self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio
|
|
self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb
|
|
self.extra_per_block_abs_pos_emb_type = extra_per_block_abs_pos_emb_type.lower()
|
|
self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio
|
|
self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio
|
|
self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio
|
|
self.dtype = dtype
|
|
weight_args = {"device": device, "dtype": dtype}
|
|
|
|
in_channels = in_channels + 1 if concat_padding_mask else in_channels
|
|
self.x_embedder = PatchEmbed(
|
|
spatial_patch_size=patch_spatial,
|
|
temporal_patch_size=patch_temporal,
|
|
in_channels=in_channels,
|
|
out_channels=model_channels,
|
|
bias=False,
|
|
weight_args=weight_args,
|
|
operations=operations,
|
|
)
|
|
|
|
self.build_pos_embed(device=device)
|
|
self.block_x_format = block_x_format
|
|
self.use_adaln_lora = use_adaln_lora
|
|
self.adaln_lora_dim = adaln_lora_dim
|
|
self.t_embedder = nn.ModuleList(
|
|
[Timesteps(model_channels),
|
|
TimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora, weight_args=weight_args, operations=operations),]
|
|
)
|
|
|
|
self.blocks = nn.ModuleDict()
|
|
|
|
for idx in range(num_blocks):
|
|
self.blocks[f"block{idx}"] = GeneralDITTransformerBlock(
|
|
x_dim=model_channels,
|
|
context_dim=crossattn_emb_channels,
|
|
num_heads=num_heads,
|
|
block_config=block_config,
|
|
mlp_ratio=mlp_ratio,
|
|
x_format=self.block_x_format,
|
|
use_adaln_lora=use_adaln_lora,
|
|
adaln_lora_dim=adaln_lora_dim,
|
|
weight_args=weight_args,
|
|
operations=operations,
|
|
)
|
|
|
|
if self.affline_emb_norm:
|
|
logging.debug("Building affine embedding normalization layer")
|
|
self.affline_norm = RMSNorm(model_channels, elementwise_affine=True, eps=1e-6)
|
|
else:
|
|
self.affline_norm = nn.Identity()
|
|
|
|
self.final_layer = FinalLayer(
|
|
hidden_size=self.model_channels,
|
|
spatial_patch_size=self.patch_spatial,
|
|
temporal_patch_size=self.patch_temporal,
|
|
out_channels=self.out_channels,
|
|
use_adaln_lora=self.use_adaln_lora,
|
|
adaln_lora_dim=self.adaln_lora_dim,
|
|
weight_args=weight_args,
|
|
operations=operations,
|
|
)
|
|
|
|
def build_pos_embed(self, device=None):
|
|
if self.pos_emb_cls == "rope3d":
|
|
cls_type = VideoRopePosition3DEmb
|
|
else:
|
|
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
|
|
|
|
logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
|
|
kwargs = dict(
|
|
model_channels=self.model_channels,
|
|
len_h=self.max_img_h // self.patch_spatial,
|
|
len_w=self.max_img_w // self.patch_spatial,
|
|
len_t=self.max_frames // self.patch_temporal,
|
|
is_learnable=self.pos_emb_learnable,
|
|
interpolation=self.pos_emb_interpolation,
|
|
head_dim=self.model_channels // self.num_heads,
|
|
h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
|
|
w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
|
|
t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
|
|
device=device,
|
|
)
|
|
self.pos_embedder = cls_type(
|
|
**kwargs,
|
|
)
|
|
|
|
if self.extra_per_block_abs_pos_emb:
|
|
assert self.extra_per_block_abs_pos_emb_type in [
|
|
"learnable",
|
|
], f"Unknown extra_per_block_abs_pos_emb_type {self.extra_per_block_abs_pos_emb_type}"
|
|
kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
|
|
kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
|
|
kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
|
|
kwargs["device"] = device
|
|
self.extra_pos_embedder = LearnablePosEmbAxis(
|
|
**kwargs,
|
|
)
|
|
|
|
def prepare_embedded_sequence(
|
|
self,
|
|
x_B_C_T_H_W: torch.Tensor,
|
|
fps: Optional[torch.Tensor] = None,
|
|
padding_mask: Optional[torch.Tensor] = None,
|
|
latent_condition: Optional[torch.Tensor] = None,
|
|
latent_condition_sigma: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
"""
|
|
Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.
|
|
|
|
Args:
|
|
x_B_C_T_H_W (torch.Tensor): video
|
|
fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
|
|
If None, a default value (`self.base_fps`) will be used.
|
|
padding_mask (Optional[torch.Tensor]): current it is not used
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
- A tensor of shape (B, T, H, W, D) with the embedded sequence.
|
|
- An optional positional embedding tensor, returned only if the positional embedding class
|
|
(`self.pos_emb_cls`) includes 'rope'. Otherwise, None.
|
|
|
|
Notes:
|
|
- If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
|
|
- The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
|
|
- If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
|
|
the `self.pos_embedder` with the shape [T, H, W].
|
|
- If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the
|
|
`self.pos_embedder` with the fps tensor.
|
|
- Otherwise, the positional embeddings are generated without considering fps.
|
|
"""
|
|
if self.concat_padding_mask:
|
|
if padding_mask is not None:
|
|
padding_mask = transforms.functional.resize(
|
|
padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
|
|
)
|
|
else:
|
|
padding_mask = torch.zeros((x_B_C_T_H_W.shape[0], 1, x_B_C_T_H_W.shape[-2], x_B_C_T_H_W.shape[-1]), dtype=x_B_C_T_H_W.dtype, device=x_B_C_T_H_W.device)
|
|
|
|
x_B_C_T_H_W = torch.cat(
|
|
[x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
|
|
)
|
|
x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)
|
|
|
|
if self.extra_per_block_abs_pos_emb:
|
|
extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device)
|
|
else:
|
|
extra_pos_emb = None
|
|
|
|
if "rope" in self.pos_emb_cls.lower():
|
|
return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device), extra_pos_emb
|
|
|
|
if "fps_aware" in self.pos_emb_cls:
|
|
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device) # [B, T, H, W, D]
|
|
else:
|
|
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, device=x_B_C_T_H_W.device) # [B, T, H, W, D]
|
|
|
|
return x_B_T_H_W_D, None, extra_pos_emb
|
|
|
|
def decoder_head(
|
|
self,
|
|
x_B_T_H_W_D: torch.Tensor,
|
|
emb_B_D: torch.Tensor,
|
|
crossattn_emb: torch.Tensor,
|
|
origin_shape: Tuple[int, int, int, int, int], # [B, C, T, H, W]
|
|
crossattn_mask: Optional[torch.Tensor] = None,
|
|
adaln_lora_B_3D: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
del crossattn_emb, crossattn_mask
|
|
B, C, T_before_patchify, H_before_patchify, W_before_patchify = origin_shape
|
|
x_BT_HW_D = rearrange(x_B_T_H_W_D, "B T H W D -> (B T) (H W) D")
|
|
x_BT_HW_D = self.final_layer(x_BT_HW_D, emb_B_D, adaln_lora_B_3D=adaln_lora_B_3D)
|
|
# This is to ensure x_BT_HW_D has the correct shape because
|
|
# when we merge T, H, W into one dimension, x_BT_HW_D has shape (B * T * H * W, 1*1, D).
|
|
x_BT_HW_D = x_BT_HW_D.view(
|
|
B * T_before_patchify // self.patch_temporal,
|
|
H_before_patchify // self.patch_spatial * W_before_patchify // self.patch_spatial,
|
|
-1,
|
|
)
|
|
x_B_D_T_H_W = rearrange(
|
|
x_BT_HW_D,
|
|
"(B T) (H W) (p1 p2 t C) -> B C (T t) (H p1) (W p2)",
|
|
p1=self.patch_spatial,
|
|
p2=self.patch_spatial,
|
|
H=H_before_patchify // self.patch_spatial,
|
|
W=W_before_patchify // self.patch_spatial,
|
|
t=self.patch_temporal,
|
|
B=B,
|
|
)
|
|
return x_B_D_T_H_W
|
|
|
|
def forward_before_blocks(
|
|
self,
|
|
x: torch.Tensor,
|
|
timesteps: torch.Tensor,
|
|
crossattn_emb: torch.Tensor,
|
|
crossattn_mask: Optional[torch.Tensor] = None,
|
|
fps: Optional[torch.Tensor] = None,
|
|
image_size: Optional[torch.Tensor] = None,
|
|
padding_mask: Optional[torch.Tensor] = None,
|
|
scalar_feature: Optional[torch.Tensor] = None,
|
|
data_type: Optional[DataType] = DataType.VIDEO,
|
|
latent_condition: Optional[torch.Tensor] = None,
|
|
latent_condition_sigma: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x: (B, C, T, H, W) tensor of spatial-temp inputs
|
|
timesteps: (B, ) tensor of timesteps
|
|
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
|
|
crossattn_mask: (B, N) tensor of cross-attention masks
|
|
"""
|
|
del kwargs
|
|
assert isinstance(
|
|
data_type, DataType
|
|
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
|
|
original_shape = x.shape
|
|
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
|
|
x,
|
|
fps=fps,
|
|
padding_mask=padding_mask,
|
|
latent_condition=latent_condition,
|
|
latent_condition_sigma=latent_condition_sigma,
|
|
)
|
|
# logging affline scale information
|
|
affline_scale_log_info = {}
|
|
|
|
timesteps_B_D, adaln_lora_B_3D = self.t_embedder[1](self.t_embedder[0](timesteps.flatten()).to(x.dtype))
|
|
affline_emb_B_D = timesteps_B_D
|
|
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()
|
|
|
|
if scalar_feature is not None:
|
|
raise NotImplementedError("Scalar feature is not implemented yet.")
|
|
|
|
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
|
|
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
|
|
|
|
if self.use_cross_attn_mask:
|
|
if crossattn_mask is not None and not torch.is_floating_point(crossattn_mask):
|
|
crossattn_mask = (crossattn_mask - 1).to(x.dtype) * torch.finfo(x.dtype).max
|
|
crossattn_mask = crossattn_mask[:, None, None, :] # .to(dtype=torch.bool) # [B, 1, 1, length]
|
|
else:
|
|
crossattn_mask = None
|
|
|
|
if self.blocks["block0"].x_format == "THWBD":
|
|
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
|
|
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
|
|
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
|
|
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
|
|
)
|
|
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
|
|
|
|
if crossattn_mask:
|
|
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
|
|
|
|
elif self.blocks["block0"].x_format == "BTHWD":
|
|
x = x_B_T_H_W_D
|
|
else:
|
|
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
|
|
output = {
|
|
"x": x,
|
|
"affline_emb_B_D": affline_emb_B_D,
|
|
"crossattn_emb": crossattn_emb,
|
|
"crossattn_mask": crossattn_mask,
|
|
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
|
|
"adaln_lora_B_3D": adaln_lora_B_3D,
|
|
"original_shape": original_shape,
|
|
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
|
|
}
|
|
return output
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
timesteps: torch.Tensor,
|
|
context: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
# crossattn_emb: torch.Tensor,
|
|
# crossattn_mask: Optional[torch.Tensor] = None,
|
|
fps: Optional[torch.Tensor] = None,
|
|
image_size: Optional[torch.Tensor] = None,
|
|
padding_mask: Optional[torch.Tensor] = None,
|
|
scalar_feature: Optional[torch.Tensor] = None,
|
|
data_type: Optional[DataType] = DataType.VIDEO,
|
|
latent_condition: Optional[torch.Tensor] = None,
|
|
latent_condition_sigma: Optional[torch.Tensor] = None,
|
|
condition_video_augment_sigma: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Args:
|
|
x: (B, C, T, H, W) tensor of spatial-temp inputs
|
|
timesteps: (B, ) tensor of timesteps
|
|
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
|
|
crossattn_mask: (B, N) tensor of cross-attention masks
|
|
condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to
|
|
augment condition input, the lvg model will condition on the condition_video_augment_sigma value;
|
|
we need forward_before_blocks pass to the forward_before_blocks function.
|
|
"""
|
|
|
|
crossattn_emb = context
|
|
crossattn_mask = attention_mask
|
|
|
|
inputs = self.forward_before_blocks(
|
|
x=x,
|
|
timesteps=timesteps,
|
|
crossattn_emb=crossattn_emb,
|
|
crossattn_mask=crossattn_mask,
|
|
fps=fps,
|
|
image_size=image_size,
|
|
padding_mask=padding_mask,
|
|
scalar_feature=scalar_feature,
|
|
data_type=data_type,
|
|
latent_condition=latent_condition,
|
|
latent_condition_sigma=latent_condition_sigma,
|
|
condition_video_augment_sigma=condition_video_augment_sigma,
|
|
**kwargs,
|
|
)
|
|
x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = (
|
|
inputs["x"],
|
|
inputs["affline_emb_B_D"],
|
|
inputs["crossattn_emb"],
|
|
inputs["crossattn_mask"],
|
|
inputs["rope_emb_L_1_1_D"],
|
|
inputs["adaln_lora_B_3D"],
|
|
inputs["original_shape"],
|
|
)
|
|
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"].to(x.dtype)
|
|
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
|
|
assert (
|
|
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
|
|
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"
|
|
|
|
for _, block in self.blocks.items():
|
|
assert (
|
|
self.blocks["block0"].x_format == block.x_format
|
|
), f"First block has x_format {self.blocks[0].x_format}, got {block.x_format}"
|
|
|
|
x = block(
|
|
x,
|
|
affline_emb_B_D,
|
|
crossattn_emb,
|
|
crossattn_mask,
|
|
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
|
|
adaln_lora_B_3D=adaln_lora_B_3D,
|
|
extra_per_block_pos_emb=extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
|
|
)
|
|
|
|
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")
|
|
|
|
x_B_D_T_H_W = self.decoder_head(
|
|
x_B_T_H_W_D=x_B_T_H_W_D,
|
|
emb_B_D=affline_emb_B_D,
|
|
crossattn_emb=None,
|
|
origin_shape=original_shape,
|
|
crossattn_mask=None,
|
|
adaln_lora_B_3D=adaln_lora_B_3D,
|
|
)
|
|
|
|
return x_B_D_T_H_W
|