mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
a5f4292f9f
* Let tokenizers return weights to be stored in the saved checkpoint. * Basic hunyuan dit implementation. * Fix some resolutions not working. * Support hydit checkpoint save. * Init with right dtype. * Switch to optimized attention in pooler. * Fix black images on hunyuan dit.
521 lines
28 KiB
Python
521 lines
28 KiB
Python
import comfy.supported_models
|
|
import comfy.supported_models_base
|
|
import comfy.utils
|
|
import math
|
|
import logging
|
|
import torch
|
|
|
|
def count_blocks(state_dict_keys, prefix_string):
|
|
count = 0
|
|
while True:
|
|
c = False
|
|
for k in state_dict_keys:
|
|
if k.startswith(prefix_string.format(count)):
|
|
c = True
|
|
break
|
|
if c == False:
|
|
break
|
|
count += 1
|
|
return count
|
|
|
|
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
|
|
context_dim = None
|
|
use_linear_in_transformer = False
|
|
|
|
transformer_prefix = prefix + "1.transformer_blocks."
|
|
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
|
|
if len(transformer_keys) > 0:
|
|
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
|
|
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
|
|
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
|
|
time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
|
|
time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict
|
|
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross
|
|
return None
|
|
|
|
def detect_unet_config(state_dict, key_prefix):
|
|
state_dict_keys = list(state_dict.keys())
|
|
|
|
if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model
|
|
unet_config = {}
|
|
unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1]
|
|
patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2]
|
|
unet_config["patch_size"] = patch_size
|
|
final_layer = '{}final_layer.linear.weight'.format(key_prefix)
|
|
if final_layer in state_dict:
|
|
unet_config["out_channels"] = state_dict[final_layer].shape[0] // (patch_size * patch_size)
|
|
|
|
unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64
|
|
unet_config["input_size"] = None
|
|
y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix)
|
|
if y_key in state_dict_keys:
|
|
unet_config["adm_in_channels"] = state_dict[y_key].shape[1]
|
|
|
|
context_key = '{}context_embedder.weight'.format(key_prefix)
|
|
if context_key in state_dict_keys:
|
|
in_features = state_dict[context_key].shape[1]
|
|
out_features = state_dict[context_key].shape[0]
|
|
unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}}
|
|
num_patches_key = '{}pos_embed'.format(key_prefix)
|
|
if num_patches_key in state_dict_keys:
|
|
num_patches = state_dict[num_patches_key].shape[1]
|
|
unet_config["num_patches"] = num_patches
|
|
unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches))
|
|
|
|
rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix)
|
|
if rms_qk in state_dict_keys:
|
|
unet_config["qk_norm"] = "rms"
|
|
|
|
unet_config["pos_embed_scaling_factor"] = None #unused for inference
|
|
context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix)
|
|
if context_processor in state_dict_keys:
|
|
unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.')
|
|
return unet_config
|
|
|
|
if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
|
|
unet_config = {}
|
|
text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix)
|
|
if text_mapper_name in state_dict_keys:
|
|
unet_config['stable_cascade_stage'] = 'c'
|
|
w = state_dict[text_mapper_name]
|
|
if w.shape[0] == 1536: #stage c lite
|
|
unet_config['c_cond'] = 1536
|
|
unet_config['c_hidden'] = [1536, 1536]
|
|
unet_config['nhead'] = [24, 24]
|
|
unet_config['blocks'] = [[4, 12], [12, 4]]
|
|
elif w.shape[0] == 2048: #stage c full
|
|
unet_config['c_cond'] = 2048
|
|
elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys:
|
|
unet_config['stable_cascade_stage'] = 'b'
|
|
w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)]
|
|
if w.shape[-1] == 640:
|
|
unet_config['c_hidden'] = [320, 640, 1280, 1280]
|
|
unet_config['nhead'] = [-1, -1, 20, 20]
|
|
unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]]
|
|
unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]]
|
|
elif w.shape[-1] == 576: #stage b lite
|
|
unet_config['c_hidden'] = [320, 576, 1152, 1152]
|
|
unet_config['nhead'] = [-1, 9, 18, 18]
|
|
unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]]
|
|
unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]]
|
|
return unet_config
|
|
|
|
if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: #stable audio dit
|
|
unet_config = {}
|
|
unet_config["audio_model"] = "dit1.0"
|
|
return unet_config
|
|
|
|
if '{}double_layers.0.attn.w1q.weight'.format(key_prefix) in state_dict_keys: #aura flow dit
|
|
unet_config = {}
|
|
unet_config["max_seq"] = state_dict['{}positional_encoding'.format(key_prefix)].shape[1]
|
|
unet_config["cond_seq_dim"] = state_dict['{}cond_seq_linear.weight'.format(key_prefix)].shape[1]
|
|
double_layers = count_blocks(state_dict_keys, '{}double_layers.'.format(key_prefix) + '{}.')
|
|
single_layers = count_blocks(state_dict_keys, '{}single_layers.'.format(key_prefix) + '{}.')
|
|
unet_config["n_double_layers"] = double_layers
|
|
unet_config["n_layers"] = double_layers + single_layers
|
|
return unet_config
|
|
|
|
if '{}mlp_t5.0.weight'.format(key_prefix) in state_dict_keys: #Hunyuan DiT
|
|
unet_config = {}
|
|
unet_config["image_model"] = "hydit"
|
|
unet_config["depth"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
|
|
unet_config["hidden_size"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0]
|
|
if unet_config["hidden_size"] == 1408 and unet_config["depth"] == 40: #DiT-g/2
|
|
unet_config["mlp_ratio"] = 4.3637
|
|
if state_dict['{}extra_embedder.0.weight'.format(key_prefix)].shape[1] == 3968:
|
|
unet_config["size_cond"] = True
|
|
unet_config["use_style_cond"] = True
|
|
unet_config["image_model"] = "hydit1"
|
|
return unet_config
|
|
|
|
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
|
return None
|
|
|
|
unet_config = {
|
|
"use_checkpoint": False,
|
|
"image_size": 32,
|
|
"use_spatial_transformer": True,
|
|
"legacy": False
|
|
}
|
|
|
|
y_input = '{}label_emb.0.0.weight'.format(key_prefix)
|
|
if y_input in state_dict_keys:
|
|
unet_config["num_classes"] = "sequential"
|
|
unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
|
|
else:
|
|
unet_config["adm_in_channels"] = None
|
|
|
|
model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
|
|
in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
|
|
|
|
out_key = '{}out.2.weight'.format(key_prefix)
|
|
if out_key in state_dict:
|
|
out_channels = state_dict[out_key].shape[0]
|
|
else:
|
|
out_channels = 4
|
|
|
|
num_res_blocks = []
|
|
channel_mult = []
|
|
attention_resolutions = []
|
|
transformer_depth = []
|
|
transformer_depth_output = []
|
|
context_dim = None
|
|
use_linear_in_transformer = False
|
|
|
|
video_model = False
|
|
video_model_cross = False
|
|
|
|
current_res = 1
|
|
count = 0
|
|
|
|
last_res_blocks = 0
|
|
last_channel_mult = 0
|
|
|
|
input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
|
|
for count in range(input_block_count):
|
|
prefix = '{}input_blocks.{}.'.format(key_prefix, count)
|
|
prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)
|
|
|
|
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
|
|
if len(block_keys) == 0:
|
|
break
|
|
|
|
block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))
|
|
|
|
if "{}0.op.weight".format(prefix) in block_keys: #new layer
|
|
num_res_blocks.append(last_res_blocks)
|
|
channel_mult.append(last_channel_mult)
|
|
|
|
current_res *= 2
|
|
last_res_blocks = 0
|
|
last_channel_mult = 0
|
|
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
|
if out is not None:
|
|
transformer_depth_output.append(out[0])
|
|
else:
|
|
transformer_depth_output.append(0)
|
|
else:
|
|
res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
|
|
if res_block_prefix in block_keys:
|
|
last_res_blocks += 1
|
|
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
|
|
|
|
out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
|
|
if out is not None:
|
|
transformer_depth.append(out[0])
|
|
if context_dim is None:
|
|
context_dim = out[1]
|
|
use_linear_in_transformer = out[2]
|
|
video_model = out[3]
|
|
video_model_cross = out[4]
|
|
else:
|
|
transformer_depth.append(0)
|
|
|
|
res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
|
|
if res_block_prefix in block_keys_output:
|
|
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
|
if out is not None:
|
|
transformer_depth_output.append(out[0])
|
|
else:
|
|
transformer_depth_output.append(0)
|
|
|
|
|
|
num_res_blocks.append(last_res_blocks)
|
|
channel_mult.append(last_channel_mult)
|
|
if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
|
|
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
|
|
elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys:
|
|
transformer_depth_middle = -1
|
|
else:
|
|
transformer_depth_middle = -2
|
|
|
|
unet_config["in_channels"] = in_channels
|
|
unet_config["out_channels"] = out_channels
|
|
unet_config["model_channels"] = model_channels
|
|
unet_config["num_res_blocks"] = num_res_blocks
|
|
unet_config["transformer_depth"] = transformer_depth
|
|
unet_config["transformer_depth_output"] = transformer_depth_output
|
|
unet_config["channel_mult"] = channel_mult
|
|
unet_config["transformer_depth_middle"] = transformer_depth_middle
|
|
unet_config['use_linear_in_transformer'] = use_linear_in_transformer
|
|
unet_config["context_dim"] = context_dim
|
|
|
|
if video_model:
|
|
unet_config["extra_ff_mix_layer"] = True
|
|
unet_config["use_spatial_context"] = True
|
|
unet_config["merge_strategy"] = "learned_with_images"
|
|
unet_config["merge_factor"] = 0.0
|
|
unet_config["video_kernel_size"] = [3, 1, 1]
|
|
unet_config["use_temporal_resblock"] = True
|
|
unet_config["use_temporal_attention"] = True
|
|
unet_config["disable_temporal_crossattention"] = not video_model_cross
|
|
else:
|
|
unet_config["use_temporal_resblock"] = False
|
|
unet_config["use_temporal_attention"] = False
|
|
|
|
return unet_config
|
|
|
|
def model_config_from_unet_config(unet_config, state_dict=None):
|
|
for model_config in comfy.supported_models.models:
|
|
if model_config.matches(unet_config, state_dict):
|
|
return model_config(unet_config)
|
|
|
|
logging.error("no match {}".format(unet_config))
|
|
return None
|
|
|
|
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
|
|
unet_config = detect_unet_config(state_dict, unet_key_prefix)
|
|
if unet_config is None:
|
|
return None
|
|
model_config = model_config_from_unet_config(unet_config, state_dict)
|
|
if model_config is None and use_base_if_no_match:
|
|
return comfy.supported_models_base.BASE(unet_config)
|
|
else:
|
|
return model_config
|
|
|
|
def unet_prefix_from_state_dict(state_dict):
|
|
candidates = ["model.diffusion_model.", #ldm/sgm models
|
|
"model.model.", #audio models
|
|
]
|
|
counts = {k: 0 for k in candidates}
|
|
for k in state_dict:
|
|
for c in candidates:
|
|
if k.startswith(c):
|
|
counts[c] += 1
|
|
break
|
|
|
|
top = max(counts, key=counts.get)
|
|
if counts[top] > 5:
|
|
return top
|
|
else:
|
|
return "model." #aura flow and others
|
|
|
|
|
|
def convert_config(unet_config):
|
|
new_config = unet_config.copy()
|
|
num_res_blocks = new_config.get("num_res_blocks", None)
|
|
channel_mult = new_config.get("channel_mult", None)
|
|
|
|
if isinstance(num_res_blocks, int):
|
|
num_res_blocks = len(channel_mult) * [num_res_blocks]
|
|
|
|
if "attention_resolutions" in new_config:
|
|
attention_resolutions = new_config.pop("attention_resolutions")
|
|
transformer_depth = new_config.get("transformer_depth", None)
|
|
transformer_depth_middle = new_config.get("transformer_depth_middle", None)
|
|
|
|
if isinstance(transformer_depth, int):
|
|
transformer_depth = len(channel_mult) * [transformer_depth]
|
|
if transformer_depth_middle is None:
|
|
transformer_depth_middle = transformer_depth[-1]
|
|
t_in = []
|
|
t_out = []
|
|
s = 1
|
|
for i in range(len(num_res_blocks)):
|
|
res = num_res_blocks[i]
|
|
d = 0
|
|
if s in attention_resolutions:
|
|
d = transformer_depth[i]
|
|
|
|
t_in += [d] * res
|
|
t_out += [d] * (res + 1)
|
|
s *= 2
|
|
transformer_depth = t_in
|
|
transformer_depth_output = t_out
|
|
new_config["transformer_depth"] = t_in
|
|
new_config["transformer_depth_output"] = t_out
|
|
new_config["transformer_depth_middle"] = transformer_depth_middle
|
|
|
|
new_config["num_res_blocks"] = num_res_blocks
|
|
return new_config
|
|
|
|
|
|
def unet_config_from_diffusers_unet(state_dict, dtype=None):
|
|
match = {}
|
|
transformer_depth = []
|
|
|
|
attn_res = 1
|
|
down_blocks = count_blocks(state_dict, "down_blocks.{}")
|
|
for i in range(down_blocks):
|
|
attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
|
|
res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}')
|
|
for ab in range(attn_blocks):
|
|
transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
|
|
transformer_depth.append(transformer_count)
|
|
if transformer_count > 0:
|
|
match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]
|
|
|
|
attn_res *= 2
|
|
if attn_blocks == 0:
|
|
for i in range(res_blocks):
|
|
transformer_depth.append(0)
|
|
|
|
match["transformer_depth"] = transformer_depth
|
|
|
|
match["model_channels"] = state_dict["conv_in.weight"].shape[0]
|
|
match["in_channels"] = state_dict["conv_in.weight"].shape[1]
|
|
match["adm_in_channels"] = None
|
|
if "class_embedding.linear_1.weight" in state_dict:
|
|
match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
|
|
elif "add_embedding.linear_1.weight" in state_dict:
|
|
match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]
|
|
|
|
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
|
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
|
|
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
|
|
'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
|
|
'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
|
|
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
|
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
|
|
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
|
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
|
|
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
|
|
'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
|
|
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
|
|
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
|
|
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
|
|
'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
|
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
|
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320,
|
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
|
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
|
|
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2],
|
|
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
|
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5],
|
|
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
|
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6],
|
|
'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
|
|
'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True,
|
|
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]}
|
|
|
|
SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
|
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
|
|
'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False,
|
|
'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1],
|
|
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
|
|
|
|
|
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p]
|
|
|
|
for unet_config in supported_models:
|
|
matches = True
|
|
for k in match:
|
|
if match[k] != unet_config[k]:
|
|
matches = False
|
|
break
|
|
if matches:
|
|
return convert_config(unet_config)
|
|
return None
|
|
|
|
def model_config_from_diffusers_unet(state_dict):
|
|
unet_config = unet_config_from_diffusers_unet(state_dict)
|
|
if unet_config is not None:
|
|
return model_config_from_unet_config(unet_config)
|
|
return None
|
|
|
|
def convert_diffusers_mmdit(state_dict, output_prefix=""):
|
|
out_sd = {}
|
|
|
|
if 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3
|
|
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
|
|
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
|
|
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
|
|
elif 'joint_transformer_blocks.0.attn.add_k_proj.weight' in state_dict: #AuraFlow
|
|
num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.')
|
|
num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.')
|
|
sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix)
|
|
else:
|
|
return None
|
|
|
|
for k in sd_map:
|
|
weight = state_dict.get(k, None)
|
|
if weight is not None:
|
|
t = sd_map[k]
|
|
|
|
if not isinstance(t, str):
|
|
if len(t) > 2:
|
|
fun = t[2]
|
|
else:
|
|
fun = lambda a: a
|
|
offset = t[1]
|
|
if offset is not None:
|
|
old_weight = out_sd.get(t[0], None)
|
|
if old_weight is None:
|
|
old_weight = torch.empty_like(weight)
|
|
old_weight = old_weight.repeat([3] + [1] * (len(old_weight.shape) - 1))
|
|
|
|
w = old_weight.narrow(offset[0], offset[1], offset[2])
|
|
else:
|
|
old_weight = weight
|
|
w = weight
|
|
w[:] = fun(weight)
|
|
t = t[0]
|
|
out_sd[t] = old_weight
|
|
else:
|
|
out_sd[t] = weight
|
|
state_dict.pop(k)
|
|
|
|
return out_sd
|