ComfyUI/comfy/model_management.py

671 lines
21 KiB
Python

import psutil
from enum import Enum
from comfy.cli_args import args
import torch
import sys
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram
LOW_VRAM = 2
NORMAL_VRAM = 3
HIGH_VRAM = 4
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
class CPUState(Enum):
GPU = 0
CPU = 1
MPS = 2
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU
total_vram = 0
lowvram_available = True
xpu_available = False
directml_enabled = False
if args.directml is not None:
import torch_directml
directml_enabled = True
device_index = args.directml
if device_index < 0:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
print("Using directml with device:", torch_directml.device_name(device_index))
# torch_directml.disable_tiled_resources(True)
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
except:
pass
try:
if torch.backends.mps.is_available():
cpu_state = CPUState.MPS
import torch.mps
except:
pass
if args.cpu:
cpu_state = CPUState.CPU
def get_torch_device():
global xpu_available
global directml_enabled
global cpu_state
if directml_enabled:
global directml_device
return directml_device
if cpu_state == CPUState.MPS:
return torch.device("mps")
if cpu_state == CPUState.CPU:
return torch.device("cpu")
else:
if xpu_available:
return torch.device("xpu")
else:
return torch.device(torch.cuda.current_device())
def get_total_memory(dev=None, torch_total_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_total = psutil.virtual_memory().total
mem_total_torch = mem_total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif xpu_available:
stats = torch.xpu.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_reserved
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
elif total_vram > total_ram * 1.1 and total_vram > 14336:
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
vram_state = VRAMState.HIGH_VRAM
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
OOM_EXCEPTION = Exception
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
if args.disable_xformers:
XFORMERS_IS_AVAILABLE = False
else:
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILABLE = True
try:
XFORMERS_VERSION = xformers.version.__version__
print("xformers version:", XFORMERS_VERSION)
if XFORMERS_VERSION.startswith("0.0.18"):
print()
print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
print("Please downgrade or upgrade xformers to a different version.")
print()
XFORMERS_ENABLED_VAE = False
except:
pass
except:
XFORMERS_IS_AVAILABLE = False
def is_nvidia():
global cpu_state
if cpu_state == CPUState.GPU:
if torch.version.cuda:
return True
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
try:
if is_nvidia():
torch_version = torch.version.__version__
if int(torch_version[0]) >= 2:
ENABLE_PYTORCH_ATTENTION = True
except:
pass
if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
XFORMERS_IS_AVAILABLE = False
if args.lowvram:
set_vram_to = VRAMState.LOW_VRAM
lowvram_available = True
elif args.novram:
set_vram_to = VRAMState.NO_VRAM
elif args.highvram or args.gpu_only:
vram_state = VRAMState.HIGH_VRAM
FORCE_FP32 = False
FORCE_FP16 = False
if args.force_fp32:
print("Forcing FP32, if this improves things please report it.")
FORCE_FP32 = True
if args.force_fp16:
print("Forcing FP16.")
FORCE_FP16 = True
if lowvram_available:
try:
import accelerate
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
except Exception as e:
import traceback
print(traceback.format_exc())
print("ERROR: LOW VRAM MODE NEEDS accelerate.")
lowvram_available = False
if cpu_state != CPUState.GPU:
vram_state = VRAMState.DISABLED
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
print(f"Set vram state to: {vram_state.name}")
DISABLE_SMART_MEMORY = args.disable_smart_memory
if DISABLE_SMART_MEMORY:
print("Disabling smart memory management")
def get_torch_device_name(device):
global xpu_available
if hasattr(device, 'type'):
if device.type == "cuda":
try:
allocator_backend = torch.cuda.get_allocator_backend()
except:
allocator_backend = ""
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
else:
return "{}".format(device.type)
elif xpu_available:
return "{} {}".format(device, torch.xpu.get_device_name(device))
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
print("Device:", get_torch_device_name(get_torch_device()))
except:
print("Could not pick default device.")
current_loaded_models = []
class LoadedModel:
def __init__(self, model):
self.model = model
self.model_accelerated = False
self.device = model.load_device
def model_memory(self):
return self.model.model_size()
def model_memory_required(self, device):
if device == self.model.current_device:
return 0
else:
return self.model_memory()
def model_load(self, lowvram_model_memory=0):
global xpu_available
patch_model_to = None
if lowvram_model_memory == 0:
patch_model_to = self.device
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
try:
self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
if lowvram_model_memory > 0:
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
self.model_accelerated = True
if xpu_available and not args.disable_ipex_optimize:
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
return self.real_model
def model_unload(self):
if self.model_accelerated:
accelerate.hooks.remove_hook_from_submodules(self.real_model)
self.model_accelerated = False
self.model.unpatch_model(self.model.offload_device)
self.model.model_patches_to(self.model.offload_device)
def __eq__(self, other):
return self.model is other.model
def minimum_inference_memory():
return (1024 * 1024 * 1024)
def unload_model_clones(model):
to_unload = []
for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
for i in to_unload:
print("unload clone", i)
current_loaded_models.pop(i).model_unload()
def free_memory(memory_required, device, keep_loaded=[]):
unloaded_model = False
for i in range(len(current_loaded_models) -1, -1, -1):
if DISABLE_SMART_MEMORY:
current_free_mem = 0
else:
current_free_mem = get_free_memory(device)
if current_free_mem > memory_required:
break
shift_model = current_loaded_models[i]
if shift_model.device == device:
if shift_model not in keep_loaded:
current_loaded_models.pop(i).model_unload()
unloaded_model = True
if unloaded_model:
soft_empty_cache()
def load_models_gpu(models, memory_required=0):
global vram_state
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
if loaded_model in current_loaded_models:
index = current_loaded_models.index(loaded_model)
current_loaded_models.insert(0, current_loaded_models.pop(index))
models_already_loaded.append(loaded_model)
else:
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(extra_mem, d, models_already_loaded)
return
print("loading new")
total_memory_required = {}
for loaded_model in models_to_load:
unload_model_clones(loaded_model.model)
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
else:
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 256 * 1024 * 1024
cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
current_loaded_models.insert(0, loaded_model)
return
def load_model_gpu(model):
return load_models_gpu([model])
def cleanup_models():
to_delete = []
for i in range(len(current_loaded_models)):
print(sys.getrefcount(current_loaded_models[i].model))
if sys.getrefcount(current_loaded_models[i].model) <= 2:
to_delete = [i] + to_delete
for i in to_delete:
x = current_loaded_models.pop(i)
x.model_unload()
del x
def unet_offload_device():
if vram_state == VRAMState.HIGH_VRAM:
return get_torch_device()
else:
return torch.device("cpu")
def unet_inital_load_device(parameters, dtype):
torch_dev = get_torch_device()
if vram_state == VRAMState.HIGH_VRAM:
return torch_dev
cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY:
return cpu_dev
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
model_size = dtype_size * parameters
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev:
return torch_dev
else:
return cpu_dev
def text_encoder_offload_device():
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def text_encoder_device():
if args.gpu_only:
return get_torch_device()
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
#NOTE: on a Ryzen 5 7600X with 4080 it's faster to shift to GPU
if should_use_fp16() or torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
return get_torch_device()
else:
return torch.device("cpu")
else:
return torch.device("cpu")
def vae_device():
return get_torch_device()
def vae_offload_device():
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def vae_dtype():
if args.fp16_vae:
return torch.float16
elif args.bf16_vae:
return torch.bfloat16
else:
return torch.float32
def get_autocast_device(dev):
if hasattr(dev, 'type'):
return dev.type
return "cuda"
def xformers_enabled():
global xpu_available
global directml_enabled
global cpu_state
if cpu_state != CPUState.GPU:
return False
if xpu_available:
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
def xformers_enabled_vae():
enabled = xformers_enabled()
if not enabled:
return False
return XFORMERS_ENABLED_VAE
def pytorch_attention_enabled():
global ENABLE_PYTORCH_ATTENTION
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if is_nvidia(): #pytorch flash attention only works on Nvidia
return True
return False
def get_free_memory(dev=None, torch_free_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif xpu_available:
stats = torch.xpu.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_allocated = stats['allocated_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_torch = mem_reserved - mem_active
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
if torch_free_too:
return (mem_free_total, mem_free_torch)
else:
return mem_free_total
def batch_area_memory(area):
if xformers_enabled() or pytorch_attention_flash_attention():
#TODO: these formulas are copied from maximum_batch_area below
return (area / 20) * (1024 * 1024)
else:
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
def maximum_batch_area():
global vram_state
if vram_state == VRAMState.NO_VRAM:
return 0
memory_free = get_free_memory() / (1024 * 1024)
if xformers_enabled() or pytorch_attention_flash_attention():
#TODO: this needs to be tweaked
area = 20 * memory_free
else:
#TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
area = ((memory_free - 1024) * 0.9) / (0.6)
return int(max(area, 0))
def cpu_mode():
global cpu_state
return cpu_state == CPUState.CPU
def mps_mode():
global cpu_state
return cpu_state == CPUState.MPS
def is_device_cpu(device):
if hasattr(device, 'type'):
if (device.type == 'cpu'):
return True
return False
def is_device_mps(device):
if hasattr(device, 'type'):
if (device.type == 'mps'):
return True
return False
def should_use_fp16(device=None, model_params=0):
global xpu_available
global directml_enabled
if device is not None:
if is_device_cpu(device):
return False
if FORCE_FP16:
return True
if device is not None: #TODO
if is_device_mps(device):
return False
if FORCE_FP32:
return False
if directml_enabled:
return False
if cpu_mode() or mps_mode():
return False #TODO ?
if xpu_available:
return True
if torch.cuda.is_bf16_supported():
return True
props = torch.cuda.get_device_properties("cuda")
if props.major < 6:
return False
fp16_works = False
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
#when the model doesn't actually fit on the card
#TODO: actually test if GP106 and others have the same type of behavior
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
for x in nvidia_10_series:
if x in props.name.lower():
fp16_works = True
if fp16_works:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
if model_params * 4 > free_model_memory:
return True
if props.major < 7:
return False
#FP16 is just broken on these cards
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"]
for x in nvidia_16_series:
if x in props.name:
return False
return True
def soft_empty_cache():
global xpu_available
global cpu_state
if cpu_state == CPUState.MPS:
torch.mps.empty_cache()
elif xpu_available:
torch.xpu.empty_cache()
elif torch.cuda.is_available():
if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass
interrupt_processing_mutex = threading.RLock()
interrupt_processing = False
def interrupt_current_processing(value=True):
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
interrupt_processing = value
def processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
return interrupt_processing
def throw_exception_if_processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
if interrupt_processing:
interrupt_processing = False
raise InterruptProcessingException()