ComfyUI/script_examples/gradio_websockets_api_example.py
2024-09-22 08:05:12 -04:00

310 lines
12 KiB
Python

# This is a Gradio example demonstrating using the websocket api and that also decodes preview images
# Gradio has a lot of idiosyncrasies and I'm definitely not an expert at coding for it
# I'm sure there are a million and one better ways to code this, but this works pretty well and should get you started
# I suggest taking the time to check any relevant comments throughout the code
# For more info on working with Gradio: https://www.gradio.app/docs
# Ensure that ComfyUI has latent previews enabled
# If you use Comfy Manager, make sure to set the preview type there because it will override --preview-method auto/latent2rgb/taesd launch flag settings
# Check or change the preview_method in "/custom_nodes/ComfyUI-Manager/config.ini"
# If you chose to install Gradio to your ComfyUI python venv, open a command prompt this script_examples directory and run:
# ..\..\python_embeded\python.exe -s ..\script_examples\gradio_websockets_api_example.py
# To launch the app
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import json
import urllib.request
import urllib.parse
from PIL import Image
import io
from io import BytesIO
import random
#If you want to use your local ComfyUI python installation, you'll need to navigate to your comfyui/python_embeded folder, open a cmd prompt and run "python.exe -m pip install gradio"
import gradio as gr
# adjust to your ComfyUI API settings
server_address = "127.0.0.1:8188"
client_id = str(uuid.uuid4())
#some globals to store previews, active state and progress
preview_image = None
active = False
interrupted = False
step_current = None
step_total = None
def interrupt_diffusion():
global interrupted, step_current, step_total
interrupted = True
step_current = None
step_total = None
req = urllib.request.Request("http://{}/interrupt".format(server_address), method='POST')
return urllib.request.urlopen(req)
def queue_prompt(prompt):
p = {"prompt": prompt, "client_id": client_id}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(filename, subfolder, folder_type):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
return response.read()
def get_history(prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
return json.loads(response.read())
def get_images(ws, prompt):
global preview_image, active, step_current, step_total
prompt_id = queue_prompt(prompt)['prompt_id']
output_images = {}
while True:
out = ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['node'] is None and data['prompt_id'] == prompt_id:
preview_image = None #clear these globals on completion just in case
step_current = None
step_total = None
active = False
break #Execution is done
elif message['type'] == 'progress':
data = message['data']
step_current = data['value']
step_total = data['max']
else:
bytesIO = BytesIO(out[8:])
preview_image = Image.open(bytesIO) # This is your preview in PIL image format
history = get_history(prompt_id)[prompt_id]
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
images_output = []
if 'images' in node_output:
for image in node_output['images']:
image_data = get_image(image['filename'], image['subfolder'], image['type'])
images_output.append(image_data)
output_images[node_id] = images_output
return output_images
def get_prompt_images(prompt):
global preview_image
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
images = get_images(ws, prompt)
outputs = []
for node_id in images:
for image_data in images[node_id]:
image = Image.open(io.BytesIO(image_data))
outputs.append(image)
ws.close()
return outputs
############################################################################################################################
# Edit or add your own api workflow here. Make sure to enable dev mode in ComfyUI and to use the "Save(API Format)" option #
############################################################################################################################
prompt_text = """
{
"3": {
"class_type": "KSampler",
"inputs": {
"cfg": 8,
"denoise": 1,
"latent_image": [
"5",
0
],
"model": [
"4",
0
],
"negative": [
"7",
0
],
"positive": [
"6",
0
],
"sampler_name": "euler",
"scheduler": "normal",
"seed": -1,
"steps": 25
}
},
"4": {
"class_type": "CheckpointLoaderSimple",
"inputs": {
"ckpt_name": "sdxl_base_1.0_0.9vae.safetensors"
}
},
"5": {
"class_type": "EmptyLatentImage",
"inputs": {
"batch_size": 1,
"height": 1024,
"width": 1024
}
},
"6": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": ""
}
},
"7": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": ""
}
},
"8": {
"class_type": "VAEDecode",
"inputs": {
"samples": [
"3",
0
],
"vae": [
"4",
2
]
}
},
"9": {
"class_type": "SaveImage",
"inputs": {
"filename_prefix": "ComfyUI",
"images": [
"8",
0
]
}
}
}
"""
prompt = json.loads(prompt_text)
# You can also use the following if you'd rather just load a json, make sure to comment out or remove the line above
# with open("/path/to/workflow.json", "r", encoding="utf-8") as f:
# prompt = json.load(f)
# start and stop timer are used for live updating the preview and progress
# no point in keeping the timer ticking if it's not currently generating
def start_timer():
global active
active = True
return gr.Timer(active=True)
def stop_timer():
global active
active = False
return gr.Timer(active=False)
def update_preview():
return gr.Image(value=preview_image)
# Gradio is somewhat finicky about multiple things trying to change the same output, so we switch between preview and image, while hiding the other
def window_preview():
return gr.Image(visible=False, value=None), gr.Image(visible=True, value=None), gr.Button(visible=False), gr.Button(visible=True, value="Stop: Busy")
def window_final():
if interrupted: #if we interrupted during the process, put things back to normal
return gr.Image(visible=True, value=None), gr.Image(visible=False), gr.Button(visible=True), gr.Button(visible=False)
else:
return gr.Image(visible=True), gr.Image(visible=False, value=None), gr.Button(visible=True), gr.Button(visible=False)
# Puts the progress on the stop button
def update_progress():
if step_current == 0 or step_current == None:
x = 0
else:
x = int(100 * (step_current / step_total))
if step_current == None or active == False:
message = "Stop: Busy"
else:
message = f"Stop: {step_current} / {step_total} steps {x}%"
return gr.Button(value=message)
# You will need to do a lot of editing here to match your workflow
def process(pos, neg, width, height, cfg, seed):
if seed <= -1:
seed = random.randint(0, 999999999)
prompt["4"]["inputs"]["ckpt_name"] = "sdxl_base_1.0_0.9vae.safetensors" #if you want to change the model, do it here
prompt["6"]["inputs"]["text"] = pos
prompt["7"]["inputs"]["text"] = neg
prompt["3"]["inputs"]["seed"] = seed
prompt["3"]["inputs"]["cfg"] = cfg
prompt["5"]["inputs"]["height"] = height
prompt["5"]["inputs"]["width"] = width
global interrupted
interrupted = False
images = get_prompt_images(prompt)
global active
active = False
try:
return gr.Image(value=images[0]) #not covering batch generations in this example because it requires setting the image output to a gr.Gallery, along with some other changes
except:
return gr.Image()
with gr.Blocks(analytics_enabled=False, fill_width=True, fill_height=True,) as example:
preview_timer = gr.Timer(value=1, active=False) # You can also lower the timer to something like 0.5 to get more frequent updates, but there's not really much point to it
with gr.Row():
with gr.Column():
with gr.Group():
user_prompt = gr.Textbox(label="Positive Prompt: ", value="orange cat, full moon, vibrant impressionistic painting, bright vivid rainbow of colors", lines=5, max_lines=20)
user_negativeprompt = gr.Textbox(label="Negative Prompt: ", value="text, watermark", lines=2, max_lines=10,)
with gr.Group():
with gr.Row():
user_width = gr.Slider(label="Width", minimum=512, maximum=1600, step=64, value=1152,)
user_height = gr.Slider(label="Height", minimum=512, maximum=1600, step=64, value=896,)
with gr.Row():
user_cfg = gr.Slider(label="CFG: ", minimum=1.0, maximum=16.0, step=0.1, value=4.5,)
user_seed = gr.Slider(label="Seed: (-1 for random)", minimum=-1, maximum=999999999, step=1, value=-1,)
generate = gr.Button("Generate", variant="primary")
stop = gr.Button("Stop", variant="stop", visible=False)
with gr.Column():
output_image = gr.Image(label="Image: ", type="pil", format="jpeg", interactive=False, visible=True)
output_preview = gr.Image(label="Preview: ", type="pil", format="jpeg", interactive=False, visible=False)
# On tick, we update the preview and then the progress
preview_timer.tick(
fn=update_preview, outputs=output_preview, show_progress="hidden").then(
fn=update_progress, outputs=stop, show_progress="hidden")
# On generate we switch windows/buttons, start the update tick, diffuse the image, stop the update tick and then finally, swap the image outputs/buttons back
generate.click(
fn=window_preview, outputs=[output_image, output_preview, generate, stop], show_progress="hidden").then(
fn=start_timer, outputs=preview_timer, show_progress="hidden").then(
fn=process, inputs=[user_prompt, user_negativeprompt, user_width, user_height, user_cfg, user_seed], outputs=output_image).then(
fn=stop_timer, outputs=preview_timer, show_progress="hidden").then(
fn=window_final, outputs=[output_image, output_preview, generate, stop], show_progress="hidden")
stop.click(fn=interrupt_diffusion, show_progress="hidden")
# Adjust settings to your needs https://www.gradio.app/docs/gradio/blocks#blocks-launch for more info
example.queue(max_size=2,) # how many users can queue up in line
example.launch(share=False, inbrowser=True, server_name="0.0.0.0", server_port=7860, enable_monitoring=False) # good for LAN-only setups