ComfyUI/comfy/sd.py
2023-01-28 02:14:22 -05:00

133 lines
4.9 KiB
Python

import torch
import sd1_clip
import sd2_clip
from ldm.util import instantiate_from_config
from ldm.models.autoencoder import AutoencoderKL
from omegaconf import OmegaConf
def load_model_from_config(config, ckpt, verbose=False, load_state_dict_to=[]):
print(f"Loading model from {ckpt}")
if ckpt.lower().endswith(".safetensors"):
import safetensors.torch
sd = safetensors.torch.load_file(ckpt, device="cpu")
else:
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
k = list(sd.keys())
for x in k:
# print(x)
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
sd[y] = sd.pop(x)
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
if ids.dtype == torch.float32:
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
for x in load_state_dict_to:
x.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.eval()
return model
class CLIP:
def __init__(self, config):
self.target_clip = config["target"]
if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
clip = sd2_clip.SD2ClipModel
tokenizer = sd2_clip.SD2Tokenizer
elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
clip = sd1_clip.SD1ClipModel
tokenizer = sd1_clip.SD1Tokenizer
if "params" in config:
self.cond_stage_model = clip(**(config["params"]))
else:
self.cond_stage_model = clip()
self.tokenizer = tokenizer()
def encode(self, text):
tokens = self.tokenizer.tokenize_with_weights(text)
cond = self.cond_stage_model.encode_token_weights(tokens)
return cond
class VAE:
def __init__(self, ckpt_path=None, scale_factor=0.18215, device="cuda", config=None):
if config is None:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path)
else:
self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path)
self.first_stage_model = self.first_stage_model.eval()
self.scale_factor = scale_factor
self.device = device
def decode(self, samples):
self.first_stage_model = self.first_stage_model.to(self.device)
samples = samples.to(self.device)
pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * samples)
pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0)
self.first_stage_model = self.first_stage_model.cpu()
pixel_samples = pixel_samples.cpu().movedim(1,-1)
return pixel_samples
def encode(self, pixel_samples):
self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
self.first_stage_model = self.first_stage_model.cpu()
samples = samples.cpu()
return samples
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True):
config = OmegaConf.load(config_path)
model_config_params = config['model']['params']
clip_config = model_config_params['cond_stage_config']
scale_factor = model_config_params['scale_factor']
vae_config = model_config_params['first_stage_config']
clip = None
vae = None
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
load_state_dict_to = []
if output_vae:
vae = VAE(scale_factor=scale_factor, config=vae_config)
w.first_stage_model = vae.first_stage_model
load_state_dict_to = [w]
if output_clip:
clip = CLIP(config=clip_config)
w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w]
model = load_model_from_config(config, ckpt_path, verbose=False, load_state_dict_to=load_state_dict_to)
return (model, clip, vae)