mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
92 lines
4.2 KiB
Python
92 lines
4.2 KiB
Python
from comfy import sd1_clip
|
|
from comfy import sdxl_clip
|
|
from transformers import T5TokenizerFast
|
|
import comfy.t5
|
|
import torch
|
|
import os
|
|
import comfy.model_management
|
|
|
|
class T5XXLModel(sd1_clip.SDClipModel):
|
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
|
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
|
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5)
|
|
|
|
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
|
def __init__(self, embedding_directory=None):
|
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
|
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
|
|
|
class SDT5XXLTokenizer(sd1_clip.SD1Tokenizer):
|
|
def __init__(self, embedding_directory=None):
|
|
super().__init__(embedding_directory=embedding_directory, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
|
|
|
class SDT5XXLModel(sd1_clip.SD1ClipModel):
|
|
def __init__(self, device="cpu", dtype=None, **kwargs):
|
|
super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, **kwargs)
|
|
|
|
|
|
|
|
class SD3Tokenizer:
|
|
def __init__(self, embedding_directory=None):
|
|
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
|
|
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
|
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
|
|
|
|
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
|
out = {}
|
|
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
|
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
|
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
|
return out
|
|
|
|
def untokenize(self, token_weight_pair):
|
|
return self.clip_g.untokenize(token_weight_pair)
|
|
|
|
class SD3ClipModel(torch.nn.Module):
|
|
def __init__(self, device="cpu", dtype=None):
|
|
super().__init__()
|
|
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False)
|
|
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype)
|
|
self.t5xxl = T5XXLModel(device=device, dtype=dtype)
|
|
|
|
def set_clip_options(self, options):
|
|
self.clip_l.set_clip_options(options)
|
|
self.clip_g.set_clip_options(options)
|
|
self.t5xxl.set_clip_options(options)
|
|
|
|
def reset_clip_options(self):
|
|
self.clip_g.reset_clip_options()
|
|
self.clip_l.reset_clip_options()
|
|
self.t5xxl.reset_clip_options()
|
|
|
|
def encode_token_weights(self, token_weight_pairs):
|
|
token_weight_pairs_l = token_weight_pairs["l"]
|
|
token_weight_pairs_g = token_weight_pairs["g"]
|
|
token_weight_pars_t5 = token_weight_pairs["t5xxl"]
|
|
lg_out = None
|
|
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
|
|
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
|
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
|
lg_out = torch.cat([l_out, g_out], dim=-1)
|
|
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
|
|
out = lg_out
|
|
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
|
|
else:
|
|
pooled = torch.zeros((1, 1280 + 768), device=comfy.model_management.intermediate_device())
|
|
|
|
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5)
|
|
if lg_out is not None:
|
|
out = torch.cat([lg_out, t5_out], dim=-2)
|
|
else:
|
|
out = t5_out
|
|
|
|
return out, pooled
|
|
|
|
def load_sd(self, sd):
|
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
|
return self.clip_g.load_sd(sd)
|
|
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
|
return self.clip_l.load_sd(sd)
|
|
else:
|
|
return self.t5xxl.load_sd(sd)
|