mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 18:35:17 +00:00
766c7b3815
Don't add SRFormer because the code license is incompatible with the GPL. Remove MAT because it's unused and the license is incompatible with GPL.
1183 lines
40 KiB
Python
1183 lines
40 KiB
Python
# pylint: skip-file
|
|
import math
|
|
import re
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.utils.checkpoint as checkpoint
|
|
from einops import rearrange
|
|
from einops.layers.torch import Rearrange
|
|
from torch import Tensor
|
|
from torch.nn import functional as F
|
|
|
|
from .timm.drop import DropPath
|
|
from .timm.weight_init import trunc_normal_
|
|
|
|
|
|
def img2windows(img, H_sp, W_sp):
|
|
"""
|
|
Input: Image (B, C, H, W)
|
|
Output: Window Partition (B', N, C)
|
|
"""
|
|
B, C, H, W = img.shape
|
|
img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
|
|
img_perm = (
|
|
img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C)
|
|
)
|
|
return img_perm
|
|
|
|
|
|
def windows2img(img_splits_hw, H_sp, W_sp, H, W):
|
|
"""
|
|
Input: Window Partition (B', N, C)
|
|
Output: Image (B, H, W, C)
|
|
"""
|
|
B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))
|
|
|
|
img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
|
|
img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
|
return img
|
|
|
|
|
|
class SpatialGate(nn.Module):
|
|
"""Spatial-Gate.
|
|
Args:
|
|
dim (int): Half of input channels.
|
|
"""
|
|
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.conv = nn.Conv2d(
|
|
dim, dim, kernel_size=3, stride=1, padding=1, groups=dim
|
|
) # DW Conv
|
|
|
|
def forward(self, x, H, W):
|
|
# Split
|
|
x1, x2 = x.chunk(2, dim=-1)
|
|
B, N, C = x.shape
|
|
x2 = (
|
|
self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W))
|
|
.flatten(2)
|
|
.transpose(-1, -2)
|
|
.contiguous()
|
|
)
|
|
|
|
return x1 * x2
|
|
|
|
|
|
class SGFN(nn.Module):
|
|
"""Spatial-Gate Feed-Forward Network.
|
|
Args:
|
|
in_features (int): Number of input channels.
|
|
hidden_features (int | None): Number of hidden channels. Default: None
|
|
out_features (int | None): Number of output channels. Default: None
|
|
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
|
drop (float): Dropout rate. Default: 0.0
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_layer=nn.GELU,
|
|
drop=0.0,
|
|
):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.act = act_layer()
|
|
self.sg = SpatialGate(hidden_features // 2)
|
|
self.fc2 = nn.Linear(hidden_features // 2, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x, H, W):
|
|
"""
|
|
Input: x: (B, H*W, C), H, W
|
|
Output: x: (B, H*W, C)
|
|
"""
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
|
|
x = self.sg(x, H, W)
|
|
x = self.drop(x)
|
|
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class DynamicPosBias(nn.Module):
|
|
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
|
|
"""Dynamic Relative Position Bias.
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads.
|
|
residual (bool): If True, use residual strage to connect conv.
|
|
"""
|
|
|
|
def __init__(self, dim, num_heads, residual):
|
|
super().__init__()
|
|
self.residual = residual
|
|
self.num_heads = num_heads
|
|
self.pos_dim = dim // 4
|
|
self.pos_proj = nn.Linear(2, self.pos_dim)
|
|
self.pos1 = nn.Sequential(
|
|
nn.LayerNorm(self.pos_dim),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(self.pos_dim, self.pos_dim),
|
|
)
|
|
self.pos2 = nn.Sequential(
|
|
nn.LayerNorm(self.pos_dim),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(self.pos_dim, self.pos_dim),
|
|
)
|
|
self.pos3 = nn.Sequential(
|
|
nn.LayerNorm(self.pos_dim),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(self.pos_dim, self.num_heads),
|
|
)
|
|
|
|
def forward(self, biases):
|
|
if self.residual:
|
|
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
|
|
pos = pos + self.pos1(pos)
|
|
pos = pos + self.pos2(pos)
|
|
pos = self.pos3(pos)
|
|
else:
|
|
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
|
|
return pos
|
|
|
|
|
|
class Spatial_Attention(nn.Module):
|
|
"""Spatial Window Self-Attention.
|
|
It supports rectangle window (containing square window).
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
idx (int): The indentix of window. (0/1)
|
|
split_size (tuple(int)): Height and Width of spatial window.
|
|
dim_out (int | None): The dimension of the attention output. Default: None
|
|
num_heads (int): Number of attention heads. Default: 6
|
|
attn_drop (float): Dropout ratio of attention weight. Default: 0.0
|
|
proj_drop (float): Dropout ratio of output. Default: 0.0
|
|
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set
|
|
position_bias (bool): The dynamic relative position bias. Default: True
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
idx,
|
|
split_size=[8, 8],
|
|
dim_out=None,
|
|
num_heads=6,
|
|
attn_drop=0.0,
|
|
proj_drop=0.0,
|
|
qk_scale=None,
|
|
position_bias=True,
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.dim_out = dim_out or dim
|
|
self.split_size = split_size
|
|
self.num_heads = num_heads
|
|
self.idx = idx
|
|
self.position_bias = position_bias
|
|
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
if idx == 0:
|
|
H_sp, W_sp = self.split_size[0], self.split_size[1]
|
|
elif idx == 1:
|
|
W_sp, H_sp = self.split_size[0], self.split_size[1]
|
|
else:
|
|
print("ERROR MODE", idx)
|
|
exit(0)
|
|
self.H_sp = H_sp
|
|
self.W_sp = W_sp
|
|
|
|
if self.position_bias:
|
|
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
|
|
# generate mother-set
|
|
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp)
|
|
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp)
|
|
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
|
|
biases = biases.flatten(1).transpose(0, 1).contiguous().float()
|
|
self.register_buffer("rpe_biases", biases)
|
|
|
|
# get pair-wise relative position index for each token inside the window
|
|
coords_h = torch.arange(self.H_sp)
|
|
coords_w = torch.arange(self.W_sp)
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
|
coords_flatten = torch.flatten(coords, 1)
|
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
relative_coords[:, :, 0] += self.H_sp - 1
|
|
relative_coords[:, :, 1] += self.W_sp - 1
|
|
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
|
|
relative_position_index = relative_coords.sum(-1)
|
|
self.register_buffer("relative_position_index", relative_position_index)
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
def im2win(self, x, H, W):
|
|
B, N, C = x.shape
|
|
x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
|
|
x = img2windows(x, self.H_sp, self.W_sp)
|
|
x = (
|
|
x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads)
|
|
.permute(0, 2, 1, 3)
|
|
.contiguous()
|
|
)
|
|
return x
|
|
|
|
def forward(self, qkv, H, W, mask=None):
|
|
"""
|
|
Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size
|
|
Output: x (B, H, W, C)
|
|
"""
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
B, L, C = q.shape
|
|
assert L == H * W, "flatten img_tokens has wrong size"
|
|
|
|
# partition the q,k,v, image to window
|
|
q = self.im2win(q, H, W)
|
|
k = self.im2win(k, H, W)
|
|
v = self.im2win(v, H, W)
|
|
|
|
q = q * self.scale
|
|
attn = q @ k.transpose(-2, -1) # B head N C @ B head C N --> B head N N
|
|
|
|
# calculate drpe
|
|
if self.position_bias:
|
|
pos = self.pos(self.rpe_biases)
|
|
# select position bias
|
|
relative_position_bias = pos[self.relative_position_index.view(-1)].view(
|
|
self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1
|
|
)
|
|
relative_position_bias = relative_position_bias.permute(
|
|
2, 0, 1
|
|
).contiguous()
|
|
attn = attn + relative_position_bias.unsqueeze(0)
|
|
|
|
N = attn.shape[3]
|
|
|
|
# use mask for shift window
|
|
if mask is not None:
|
|
nW = mask.shape[0]
|
|
attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(
|
|
0
|
|
)
|
|
attn = attn.view(-1, self.num_heads, N, N)
|
|
|
|
attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = attn @ v
|
|
x = x.transpose(1, 2).reshape(
|
|
-1, self.H_sp * self.W_sp, C
|
|
) # B head N N @ B head N C
|
|
|
|
# merge the window, window to image
|
|
x = windows2img(x, self.H_sp, self.W_sp, H, W) # B H' W' C
|
|
|
|
return x
|
|
|
|
|
|
class Adaptive_Spatial_Attention(nn.Module):
|
|
# The implementation builds on CAT code https://github.com/Zhengchen1999/CAT
|
|
"""Adaptive Spatial Self-Attention
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads. Default: 6
|
|
split_size (tuple(int)): Height and Width of spatial window.
|
|
shift_size (tuple(int)): Shift size for spatial window.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
|
|
drop (float): Dropout rate. Default: 0.0
|
|
attn_drop (float): Attention dropout rate. Default: 0.0
|
|
rg_idx (int): The indentix of Residual Group (RG)
|
|
b_idx (int): The indentix of Block in each RG
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
reso=64,
|
|
split_size=[8, 8],
|
|
shift_size=[1, 2],
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
rg_idx=0,
|
|
b_idx=0,
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.num_heads = num_heads
|
|
self.split_size = split_size
|
|
self.shift_size = shift_size
|
|
self.b_idx = b_idx
|
|
self.rg_idx = rg_idx
|
|
self.patches_resolution = reso
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
|
|
assert (
|
|
0 <= self.shift_size[0] < self.split_size[0]
|
|
), "shift_size must in 0-split_size0"
|
|
assert (
|
|
0 <= self.shift_size[1] < self.split_size[1]
|
|
), "shift_size must in 0-split_size1"
|
|
|
|
self.branch_num = 2
|
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(drop)
|
|
|
|
self.attns = nn.ModuleList(
|
|
[
|
|
Spatial_Attention(
|
|
dim // 2,
|
|
idx=i,
|
|
split_size=split_size,
|
|
num_heads=num_heads // 2,
|
|
dim_out=dim // 2,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
position_bias=True,
|
|
)
|
|
for i in range(self.branch_num)
|
|
]
|
|
)
|
|
|
|
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
|
|
self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
|
|
):
|
|
attn_mask = self.calculate_mask(
|
|
self.patches_resolution, self.patches_resolution
|
|
)
|
|
self.register_buffer("attn_mask_0", attn_mask[0])
|
|
self.register_buffer("attn_mask_1", attn_mask[1])
|
|
else:
|
|
attn_mask = None
|
|
self.register_buffer("attn_mask_0", None)
|
|
self.register_buffer("attn_mask_1", None)
|
|
|
|
self.dwconv = nn.Sequential(
|
|
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
|
|
nn.BatchNorm2d(dim),
|
|
nn.GELU(),
|
|
)
|
|
self.channel_interaction = nn.Sequential(
|
|
nn.AdaptiveAvgPool2d(1),
|
|
nn.Conv2d(dim, dim // 8, kernel_size=1),
|
|
nn.BatchNorm2d(dim // 8),
|
|
nn.GELU(),
|
|
nn.Conv2d(dim // 8, dim, kernel_size=1),
|
|
)
|
|
self.spatial_interaction = nn.Sequential(
|
|
nn.Conv2d(dim, dim // 16, kernel_size=1),
|
|
nn.BatchNorm2d(dim // 16),
|
|
nn.GELU(),
|
|
nn.Conv2d(dim // 16, 1, kernel_size=1),
|
|
)
|
|
|
|
def calculate_mask(self, H, W):
|
|
# The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
|
|
# calculate attention mask for shift window
|
|
img_mask_0 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=0
|
|
img_mask_1 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=1
|
|
h_slices_0 = (
|
|
slice(0, -self.split_size[0]),
|
|
slice(-self.split_size[0], -self.shift_size[0]),
|
|
slice(-self.shift_size[0], None),
|
|
)
|
|
w_slices_0 = (
|
|
slice(0, -self.split_size[1]),
|
|
slice(-self.split_size[1], -self.shift_size[1]),
|
|
slice(-self.shift_size[1], None),
|
|
)
|
|
|
|
h_slices_1 = (
|
|
slice(0, -self.split_size[1]),
|
|
slice(-self.split_size[1], -self.shift_size[1]),
|
|
slice(-self.shift_size[1], None),
|
|
)
|
|
w_slices_1 = (
|
|
slice(0, -self.split_size[0]),
|
|
slice(-self.split_size[0], -self.shift_size[0]),
|
|
slice(-self.shift_size[0], None),
|
|
)
|
|
cnt = 0
|
|
for h in h_slices_0:
|
|
for w in w_slices_0:
|
|
img_mask_0[:, h, w, :] = cnt
|
|
cnt += 1
|
|
cnt = 0
|
|
for h in h_slices_1:
|
|
for w in w_slices_1:
|
|
img_mask_1[:, h, w, :] = cnt
|
|
cnt += 1
|
|
|
|
# calculate mask for window-0
|
|
img_mask_0 = img_mask_0.view(
|
|
1,
|
|
H // self.split_size[0],
|
|
self.split_size[0],
|
|
W // self.split_size[1],
|
|
self.split_size[1],
|
|
1,
|
|
)
|
|
img_mask_0 = (
|
|
img_mask_0.permute(0, 1, 3, 2, 4, 5)
|
|
.contiguous()
|
|
.view(-1, self.split_size[0], self.split_size[1], 1)
|
|
) # nW, sw[0], sw[1], 1
|
|
mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1])
|
|
attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2)
|
|
attn_mask_0 = attn_mask_0.masked_fill(
|
|
attn_mask_0 != 0, float(-100.0)
|
|
).masked_fill(attn_mask_0 == 0, float(0.0))
|
|
|
|
# calculate mask for window-1
|
|
img_mask_1 = img_mask_1.view(
|
|
1,
|
|
H // self.split_size[1],
|
|
self.split_size[1],
|
|
W // self.split_size[0],
|
|
self.split_size[0],
|
|
1,
|
|
)
|
|
img_mask_1 = (
|
|
img_mask_1.permute(0, 1, 3, 2, 4, 5)
|
|
.contiguous()
|
|
.view(-1, self.split_size[1], self.split_size[0], 1)
|
|
) # nW, sw[1], sw[0], 1
|
|
mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0])
|
|
attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2)
|
|
attn_mask_1 = attn_mask_1.masked_fill(
|
|
attn_mask_1 != 0, float(-100.0)
|
|
).masked_fill(attn_mask_1 == 0, float(0.0))
|
|
|
|
return attn_mask_0, attn_mask_1
|
|
|
|
def forward(self, x, H, W):
|
|
"""
|
|
Input: x: (B, H*W, C), H, W
|
|
Output: x: (B, H*W, C)
|
|
"""
|
|
B, L, C = x.shape
|
|
assert L == H * W, "flatten img_tokens has wrong size"
|
|
|
|
qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) # 3, B, HW, C
|
|
# V without partition
|
|
v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W)
|
|
|
|
# image padding
|
|
max_split_size = max(self.split_size[0], self.split_size[1])
|
|
pad_l = pad_t = 0
|
|
pad_r = (max_split_size - W % max_split_size) % max_split_size
|
|
pad_b = (max_split_size - H % max_split_size) % max_split_size
|
|
|
|
qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2) # 3B C H W
|
|
qkv = (
|
|
F.pad(qkv, (pad_l, pad_r, pad_t, pad_b))
|
|
.reshape(3, B, C, -1)
|
|
.transpose(-2, -1)
|
|
) # l r t b
|
|
_H = pad_b + H
|
|
_W = pad_r + W
|
|
_L = _H * _W
|
|
|
|
# window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged
|
|
# shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ...
|
|
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
|
|
self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
|
|
):
|
|
qkv = qkv.view(3, B, _H, _W, C)
|
|
qkv_0 = torch.roll(
|
|
qkv[:, :, :, :, : C // 2],
|
|
shifts=(-self.shift_size[0], -self.shift_size[1]),
|
|
dims=(2, 3),
|
|
)
|
|
qkv_0 = qkv_0.view(3, B, _L, C // 2)
|
|
qkv_1 = torch.roll(
|
|
qkv[:, :, :, :, C // 2 :],
|
|
shifts=(-self.shift_size[1], -self.shift_size[0]),
|
|
dims=(2, 3),
|
|
)
|
|
qkv_1 = qkv_1.view(3, B, _L, C // 2)
|
|
|
|
if self.patches_resolution != _H or self.patches_resolution != _W:
|
|
mask_tmp = self.calculate_mask(_H, _W)
|
|
x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device))
|
|
x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device))
|
|
else:
|
|
x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0)
|
|
x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1)
|
|
|
|
x1 = torch.roll(
|
|
x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)
|
|
)
|
|
x2 = torch.roll(
|
|
x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2)
|
|
)
|
|
x1 = x1[:, :H, :W, :].reshape(B, L, C // 2)
|
|
x2 = x2[:, :H, :W, :].reshape(B, L, C // 2)
|
|
# attention output
|
|
attened_x = torch.cat([x1, x2], dim=2)
|
|
|
|
else:
|
|
x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape(
|
|
B, L, C // 2
|
|
)
|
|
x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape(
|
|
B, L, C // 2
|
|
)
|
|
# attention output
|
|
attened_x = torch.cat([x1, x2], dim=2)
|
|
|
|
# convolution output
|
|
conv_x = self.dwconv(v)
|
|
|
|
# Adaptive Interaction Module (AIM)
|
|
# C-Map (before sigmoid)
|
|
channel_map = (
|
|
self.channel_interaction(conv_x)
|
|
.permute(0, 2, 3, 1)
|
|
.contiguous()
|
|
.view(B, 1, C)
|
|
)
|
|
# S-Map (before sigmoid)
|
|
attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
|
|
spatial_map = self.spatial_interaction(attention_reshape)
|
|
|
|
# C-I
|
|
attened_x = attened_x * torch.sigmoid(channel_map)
|
|
# S-I
|
|
conv_x = torch.sigmoid(spatial_map) * conv_x
|
|
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
|
|
|
|
x = attened_x + conv_x
|
|
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
class Adaptive_Channel_Attention(nn.Module):
|
|
# The implementation builds on XCiT code https://github.com/facebookresearch/xcit
|
|
"""Adaptive Channel Self-Attention
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads. Default: 6
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
|
|
attn_drop (float): Attention dropout rate. Default: 0.0
|
|
drop_path (float): Stochastic depth rate. Default: 0.0
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
attn_drop=0.0,
|
|
proj_drop=0.0,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.dwconv = nn.Sequential(
|
|
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
|
|
nn.BatchNorm2d(dim),
|
|
nn.GELU(),
|
|
)
|
|
self.channel_interaction = nn.Sequential(
|
|
nn.AdaptiveAvgPool2d(1),
|
|
nn.Conv2d(dim, dim // 8, kernel_size=1),
|
|
nn.BatchNorm2d(dim // 8),
|
|
nn.GELU(),
|
|
nn.Conv2d(dim // 8, dim, kernel_size=1),
|
|
)
|
|
self.spatial_interaction = nn.Sequential(
|
|
nn.Conv2d(dim, dim // 16, kernel_size=1),
|
|
nn.BatchNorm2d(dim // 16),
|
|
nn.GELU(),
|
|
nn.Conv2d(dim // 16, 1, kernel_size=1),
|
|
)
|
|
|
|
def forward(self, x, H, W):
|
|
"""
|
|
Input: x: (B, H*W, C), H, W
|
|
Output: x: (B, H*W, C)
|
|
"""
|
|
B, N, C = x.shape
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
|
qkv = qkv.permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
q = q.transpose(-2, -1)
|
|
k = k.transpose(-2, -1)
|
|
v = v.transpose(-2, -1)
|
|
|
|
v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W)
|
|
|
|
q = torch.nn.functional.normalize(q, dim=-1)
|
|
k = torch.nn.functional.normalize(k, dim=-1)
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.temperature
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
# attention output
|
|
attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
|
|
|
|
# convolution output
|
|
conv_x = self.dwconv(v_)
|
|
|
|
# Adaptive Interaction Module (AIM)
|
|
# C-Map (before sigmoid)
|
|
attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
|
|
channel_map = self.channel_interaction(attention_reshape)
|
|
# S-Map (before sigmoid)
|
|
spatial_map = (
|
|
self.spatial_interaction(conv_x)
|
|
.permute(0, 2, 3, 1)
|
|
.contiguous()
|
|
.view(B, N, 1)
|
|
)
|
|
|
|
# S-I
|
|
attened_x = attened_x * torch.sigmoid(spatial_map)
|
|
# C-I
|
|
conv_x = conv_x * torch.sigmoid(channel_map)
|
|
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C)
|
|
|
|
x = attened_x + conv_x
|
|
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
class DATB(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
reso=64,
|
|
split_size=[2, 4],
|
|
shift_size=[1, 2],
|
|
expansion_factor=4.0,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
drop_path=0.0,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
rg_idx=0,
|
|
b_idx=0,
|
|
):
|
|
super().__init__()
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
if b_idx % 2 == 0:
|
|
# DSTB
|
|
self.attn = Adaptive_Spatial_Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
reso=reso,
|
|
split_size=split_size,
|
|
shift_size=shift_size,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop,
|
|
attn_drop=attn_drop,
|
|
rg_idx=rg_idx,
|
|
b_idx=b_idx,
|
|
)
|
|
else:
|
|
# DCTB
|
|
self.attn = Adaptive_Channel_Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
|
|
ffn_hidden_dim = int(dim * expansion_factor)
|
|
self.ffn = SGFN(
|
|
in_features=dim,
|
|
hidden_features=ffn_hidden_dim,
|
|
out_features=dim,
|
|
act_layer=act_layer,
|
|
)
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
def forward(self, x, x_size):
|
|
"""
|
|
Input: x: (B, H*W, C), x_size: (H, W)
|
|
Output: x: (B, H*W, C)
|
|
"""
|
|
H, W = x_size
|
|
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
|
x = x + self.drop_path(self.ffn(self.norm2(x), H, W))
|
|
|
|
return x
|
|
|
|
|
|
class ResidualGroup(nn.Module):
|
|
"""ResidualGroup
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
reso (int): Input resolution.
|
|
num_heads (int): Number of attention heads.
|
|
split_size (tuple(int)): Height and Width of spatial window.
|
|
expansion_factor (float): Ratio of ffn hidden dim to embedding dim.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
|
drop (float): Dropout rate. Default: 0
|
|
attn_drop(float): Attention dropout rate. Default: 0
|
|
drop_paths (float | None): Stochastic depth rate.
|
|
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
|
|
depth (int): Number of dual aggregation Transformer blocks in residual group.
|
|
use_chk (bool): Whether to use checkpointing to save memory.
|
|
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
reso,
|
|
num_heads,
|
|
split_size=[2, 4],
|
|
expansion_factor=4.0,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
drop_paths=None,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
depth=2,
|
|
use_chk=False,
|
|
resi_connection="1conv",
|
|
rg_idx=0,
|
|
):
|
|
super().__init__()
|
|
self.use_chk = use_chk
|
|
self.reso = reso
|
|
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
DATB(
|
|
dim=dim,
|
|
num_heads=num_heads,
|
|
reso=reso,
|
|
split_size=split_size,
|
|
shift_size=[split_size[0] // 2, split_size[1] // 2],
|
|
expansion_factor=expansion_factor,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop,
|
|
attn_drop=attn_drop,
|
|
drop_path=drop_paths[i],
|
|
act_layer=act_layer,
|
|
norm_layer=norm_layer,
|
|
rg_idx=rg_idx,
|
|
b_idx=i,
|
|
)
|
|
for i in range(depth)
|
|
]
|
|
)
|
|
|
|
if resi_connection == "1conv":
|
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
|
elif resi_connection == "3conv":
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(dim, dim // 4, 3, 1, 1),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Conv2d(dim // 4, dim, 3, 1, 1),
|
|
)
|
|
|
|
def forward(self, x, x_size):
|
|
"""
|
|
Input: x: (B, H*W, C), x_size: (H, W)
|
|
Output: x: (B, H*W, C)
|
|
"""
|
|
H, W = x_size
|
|
res = x
|
|
for blk in self.blocks:
|
|
if self.use_chk:
|
|
x = checkpoint.checkpoint(blk, x, x_size)
|
|
else:
|
|
x = blk(x, x_size)
|
|
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
|
|
x = self.conv(x)
|
|
x = rearrange(x, "b c h w -> b (h w) c")
|
|
x = res + x
|
|
|
|
return x
|
|
|
|
|
|
class Upsample(nn.Sequential):
|
|
"""Upsample module.
|
|
Args:
|
|
scale (int): Scale factor. Supported scales: 2^n and 3.
|
|
num_feat (int): Channel number of intermediate features.
|
|
"""
|
|
|
|
def __init__(self, scale, num_feat):
|
|
m = []
|
|
if (scale & (scale - 1)) == 0: # scale = 2^n
|
|
for _ in range(int(math.log(scale, 2))):
|
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
|
m.append(nn.PixelShuffle(2))
|
|
elif scale == 3:
|
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
|
m.append(nn.PixelShuffle(3))
|
|
else:
|
|
raise ValueError(
|
|
f"scale {scale} is not supported. " "Supported scales: 2^n and 3."
|
|
)
|
|
super(Upsample, self).__init__(*m)
|
|
|
|
|
|
class UpsampleOneStep(nn.Sequential):
|
|
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
|
Used in lightweight SR to save parameters.
|
|
|
|
Args:
|
|
scale (int): Scale factor. Supported scales: 2^n and 3.
|
|
num_feat (int): Channel number of intermediate features.
|
|
|
|
"""
|
|
|
|
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
|
self.num_feat = num_feat
|
|
self.input_resolution = input_resolution
|
|
m = []
|
|
m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
|
|
m.append(nn.PixelShuffle(scale))
|
|
super(UpsampleOneStep, self).__init__(*m)
|
|
|
|
def flops(self):
|
|
h, w = self.input_resolution
|
|
flops = h * w * self.num_feat * 3 * 9
|
|
return flops
|
|
|
|
|
|
class DAT(nn.Module):
|
|
"""Dual Aggregation Transformer
|
|
Args:
|
|
img_size (int): Input image size. Default: 64
|
|
in_chans (int): Number of input image channels. Default: 3
|
|
embed_dim (int): Patch embedding dimension. Default: 180
|
|
depths (tuple(int)): Depth of each residual group (number of DATB in each RG).
|
|
split_size (tuple(int)): Height and Width of spatial window.
|
|
num_heads (tuple(int)): Number of attention heads in different residual groups.
|
|
expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
|
drop_rate (float): Dropout rate. Default: 0
|
|
attn_drop_rate (float): Attention dropout rate. Default: 0
|
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
|
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
|
|
use_chk (bool): Whether to use checkpointing to save memory.
|
|
upscale: Upscale factor. 2/3/4 for image SR
|
|
img_range: Image range. 1. or 255.
|
|
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
|
"""
|
|
|
|
def __init__(self, state_dict):
|
|
super().__init__()
|
|
|
|
# defaults
|
|
img_size = 64
|
|
in_chans = 3
|
|
embed_dim = 180
|
|
split_size = [2, 4]
|
|
depth = [2, 2, 2, 2]
|
|
num_heads = [2, 2, 2, 2]
|
|
expansion_factor = 4.0
|
|
qkv_bias = True
|
|
qk_scale = None
|
|
drop_rate = 0.0
|
|
attn_drop_rate = 0.0
|
|
drop_path_rate = 0.1
|
|
act_layer = nn.GELU
|
|
norm_layer = nn.LayerNorm
|
|
use_chk = False
|
|
upscale = 2
|
|
img_range = 1.0
|
|
resi_connection = "1conv"
|
|
upsampler = "pixelshuffle"
|
|
|
|
self.model_arch = "DAT"
|
|
self.sub_type = "SR"
|
|
self.state = state_dict
|
|
|
|
state_keys = state_dict.keys()
|
|
if "conv_before_upsample.0.weight" in state_keys:
|
|
if "conv_up1.weight" in state_keys:
|
|
upsampler = "nearest+conv"
|
|
else:
|
|
upsampler = "pixelshuffle"
|
|
supports_fp16 = False
|
|
elif "upsample.0.weight" in state_keys:
|
|
upsampler = "pixelshuffledirect"
|
|
else:
|
|
upsampler = ""
|
|
|
|
num_feat = (
|
|
state_dict.get("conv_before_upsample.0.weight", None).shape[1]
|
|
if state_dict.get("conv_before_upsample.weight", None)
|
|
else 64
|
|
)
|
|
|
|
num_in_ch = state_dict["conv_first.weight"].shape[1]
|
|
in_chans = num_in_ch
|
|
if "conv_last.weight" in state_keys:
|
|
num_out_ch = state_dict["conv_last.weight"].shape[0]
|
|
else:
|
|
num_out_ch = num_in_ch
|
|
|
|
upscale = 1
|
|
if upsampler == "nearest+conv":
|
|
upsample_keys = [
|
|
x for x in state_keys if "conv_up" in x and "bias" not in x
|
|
]
|
|
|
|
for upsample_key in upsample_keys:
|
|
upscale *= 2
|
|
elif upsampler == "pixelshuffle":
|
|
upsample_keys = [
|
|
x
|
|
for x in state_keys
|
|
if "upsample" in x and "conv" not in x and "bias" not in x
|
|
]
|
|
for upsample_key in upsample_keys:
|
|
shape = state_dict[upsample_key].shape[0]
|
|
upscale *= math.sqrt(shape // num_feat)
|
|
upscale = int(upscale)
|
|
elif upsampler == "pixelshuffledirect":
|
|
upscale = int(
|
|
math.sqrt(state_dict["upsample.0.bias"].shape[0] // num_out_ch)
|
|
)
|
|
|
|
max_layer_num = 0
|
|
max_block_num = 0
|
|
for key in state_keys:
|
|
result = re.match(r"layers.(\d*).blocks.(\d*).norm1.weight", key)
|
|
if result:
|
|
layer_num, block_num = result.groups()
|
|
max_layer_num = max(max_layer_num, int(layer_num))
|
|
max_block_num = max(max_block_num, int(block_num))
|
|
|
|
depth = [max_block_num + 1 for _ in range(max_layer_num + 1)]
|
|
|
|
if "layers.0.blocks.1.attn.temperature" in state_keys:
|
|
num_heads_num = state_dict["layers.0.blocks.1.attn.temperature"].shape[0]
|
|
num_heads = [num_heads_num for _ in range(max_layer_num + 1)]
|
|
else:
|
|
num_heads = depth
|
|
|
|
embed_dim = state_dict["conv_first.weight"].shape[0]
|
|
expansion_factor = float(
|
|
state_dict["layers.0.blocks.0.ffn.fc1.weight"].shape[0] / embed_dim
|
|
)
|
|
|
|
# TODO: could actually count the layers, but this should do
|
|
if "layers.0.conv.4.weight" in state_keys:
|
|
resi_connection = "3conv"
|
|
else:
|
|
resi_connection = "1conv"
|
|
|
|
if "layers.0.blocks.2.attn.attn_mask_0" in state_keys:
|
|
attn_mask_0_x, attn_mask_0_y, attn_mask_0_z = state_dict[
|
|
"layers.0.blocks.2.attn.attn_mask_0"
|
|
].shape
|
|
|
|
img_size = int(math.sqrt(attn_mask_0_x * attn_mask_0_y))
|
|
|
|
if "layers.0.blocks.0.attn.attns.0.rpe_biases" in state_keys:
|
|
split_sizes = (
|
|
state_dict["layers.0.blocks.0.attn.attns.0.rpe_biases"][-1] + 1
|
|
)
|
|
split_size = [int(x) for x in split_sizes]
|
|
|
|
self.in_nc = num_in_ch
|
|
self.out_nc = num_out_ch
|
|
self.num_feat = num_feat
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.depth = depth
|
|
self.scale = upscale
|
|
self.upsampler = upsampler
|
|
self.img_size = img_size
|
|
self.img_range = img_range
|
|
self.expansion_factor = expansion_factor
|
|
self.resi_connection = resi_connection
|
|
self.split_size = split_size
|
|
|
|
self.supports_fp16 = False # Too much weirdness to support this at the moment
|
|
self.supports_bfp16 = True
|
|
self.min_size_restriction = 16
|
|
|
|
num_in_ch = in_chans
|
|
num_out_ch = in_chans
|
|
num_feat = 64
|
|
self.img_range = img_range
|
|
if in_chans == 3:
|
|
rgb_mean = (0.4488, 0.4371, 0.4040)
|
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
|
else:
|
|
self.mean = torch.zeros(1, 1, 1, 1)
|
|
self.upscale = upscale
|
|
self.upsampler = upsampler
|
|
|
|
# ------------------------- 1, Shallow Feature Extraction ------------------------- #
|
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
|
|
|
# ------------------------- 2, Deep Feature Extraction ------------------------- #
|
|
self.num_layers = len(depth)
|
|
self.use_chk = use_chk
|
|
self.num_features = (
|
|
self.embed_dim
|
|
) = embed_dim # num_features for consistency with other models
|
|
heads = num_heads
|
|
|
|
self.before_RG = nn.Sequential(
|
|
Rearrange("b c h w -> b (h w) c"), nn.LayerNorm(embed_dim)
|
|
)
|
|
|
|
curr_dim = embed_dim
|
|
dpr = [
|
|
x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))
|
|
] # stochastic depth decay rule
|
|
|
|
self.layers = nn.ModuleList()
|
|
for i in range(self.num_layers):
|
|
layer = ResidualGroup(
|
|
dim=embed_dim,
|
|
num_heads=heads[i],
|
|
reso=img_size,
|
|
split_size=split_size,
|
|
expansion_factor=expansion_factor,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])],
|
|
act_layer=act_layer,
|
|
norm_layer=norm_layer,
|
|
depth=depth[i],
|
|
use_chk=use_chk,
|
|
resi_connection=resi_connection,
|
|
rg_idx=i,
|
|
)
|
|
self.layers.append(layer)
|
|
|
|
self.norm = norm_layer(curr_dim)
|
|
# build the last conv layer in deep feature extraction
|
|
if resi_connection == "1conv":
|
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
|
elif resi_connection == "3conv":
|
|
# to save parameters and memory
|
|
self.conv_after_body = nn.Sequential(
|
|
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1),
|
|
)
|
|
|
|
# ------------------------- 3, Reconstruction ------------------------- #
|
|
if self.upsampler == "pixelshuffle":
|
|
# for classical SR
|
|
self.conv_before_upsample = nn.Sequential(
|
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)
|
|
)
|
|
self.upsample = Upsample(upscale, num_feat)
|
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
|
elif self.upsampler == "pixelshuffledirect":
|
|
# for lightweight SR (to save parameters)
|
|
self.upsample = UpsampleOneStep(
|
|
upscale, embed_dim, num_out_ch, (img_size, img_size)
|
|
)
|
|
|
|
self.apply(self._init_weights)
|
|
self.load_state_dict(state_dict, strict=True)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(
|
|
m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)
|
|
):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
def forward_features(self, x):
|
|
_, _, H, W = x.shape
|
|
x_size = [H, W]
|
|
x = self.before_RG(x)
|
|
for layer in self.layers:
|
|
x = layer(x, x_size)
|
|
x = self.norm(x)
|
|
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
|
|
|
|
return x
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Input: x: (B, C, H, W)
|
|
"""
|
|
self.mean = self.mean.type_as(x)
|
|
x = (x - self.mean) * self.img_range
|
|
|
|
if self.upsampler == "pixelshuffle":
|
|
# for image SR
|
|
x = self.conv_first(x)
|
|
x = self.conv_after_body(self.forward_features(x)) + x
|
|
x = self.conv_before_upsample(x)
|
|
x = self.conv_last(self.upsample(x))
|
|
elif self.upsampler == "pixelshuffledirect":
|
|
# for lightweight SR
|
|
x = self.conv_first(x)
|
|
x = self.conv_after_body(self.forward_features(x)) + x
|
|
x = self.upsample(x)
|
|
|
|
x = x / self.img_range + self.mean
|
|
return x
|