ComfyUI/comfy_extras/nodes_model_advanced.py
comfyanonymous 56f3c660bf ModelSamplingFlux now takes a resolution and adjusts the shift with it.
If you want to sample Flux dev exactly how the reference code does use
the same resolution as your image in this node.
2024-08-04 04:06:00 -04:00

327 lines
12 KiB
Python

import folder_paths
import comfy.sd
import comfy.model_sampling
import comfy.latent_formats
import nodes
import torch
class LCM(comfy.model_sampling.EPS):
def calculate_denoised(self, sigma, model_output, model_input):
timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
x0 = model_input - model_output * sigma
sigma_data = 0.5
scaled_timestep = timestep * 10.0 #timestep_scaling
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_out * x0 + c_skip * model_input
class X0(comfy.model_sampling.EPS):
def calculate_denoised(self, sigma, model_output, model_input):
return model_output
class ModelSamplingDiscreteDistilled(comfy.model_sampling.ModelSamplingDiscrete):
original_timesteps = 50
def __init__(self, model_config=None):
super().__init__(model_config)
self.skip_steps = self.num_timesteps // self.original_timesteps
sigmas_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
for x in range(self.original_timesteps):
sigmas_valid[self.original_timesteps - 1 - x] = self.sigmas[self.num_timesteps - 1 - x * self.skip_steps]
self.set_sigmas(sigmas_valid)
def timestep(self, sigma):
log_sigma = sigma.log()
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device)
def sigma(self, timestep):
t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
low_idx = t.floor().long()
high_idx = t.ceil().long()
w = t.frac()
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
return log_sigma.exp().to(timestep.device)
def rescale_zero_terminal_snr_sigmas(sigmas):
alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
alphas_bar_sqrt = alphas_cumprod.sqrt()
# Store old values.
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
# Shift so the last timestep is zero.
alphas_bar_sqrt -= (alphas_bar_sqrt_T)
# Scale so the first timestep is back to the old value.
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
# Convert alphas_bar_sqrt to betas
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
alphas_bar[-1] = 4.8973451890853435e-08
return ((1 - alphas_bar) / alphas_bar) ** 0.5
class ModelSamplingDiscrete:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"sampling": (["eps", "v_prediction", "lcm", "x0"],),
"zsnr": ("BOOLEAN", {"default": False}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, sampling, zsnr):
m = model.clone()
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
if sampling == "eps":
sampling_type = comfy.model_sampling.EPS
elif sampling == "v_prediction":
sampling_type = comfy.model_sampling.V_PREDICTION
elif sampling == "lcm":
sampling_type = LCM
sampling_base = ModelSamplingDiscreteDistilled
elif sampling == "x0":
sampling_type = X0
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
if zsnr:
model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class ModelSamplingStableCascade:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"shift": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step":0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, shift):
m = model.clone()
sampling_base = comfy.model_sampling.StableCascadeSampling
sampling_type = comfy.model_sampling.EPS
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift)
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class ModelSamplingSD3:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"shift": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step":0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, shift, multiplier=1000):
m = model.clone()
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
sampling_type = comfy.model_sampling.CONST
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift=shift, multiplier=multiplier)
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class ModelSamplingAuraFlow(ModelSamplingSD3):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"shift": ("FLOAT", {"default": 1.73, "min": 0.0, "max": 100.0, "step":0.01}),
}}
FUNCTION = "patch_aura"
def patch_aura(self, model, shift):
return self.patch(model, shift, multiplier=1.0)
class ModelSamplingFlux:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"max_shift": ("FLOAT", {"default": 1.15, "min": 0.0, "max": 100.0, "step":0.01}),
"base_shift": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01}),
"width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, max_shift, base_shift, width, height):
m = model.clone()
x1 = 256
x2 = 4096
mm = (max_shift - base_shift) / (x2 - x1)
b = base_shift - mm * x1
shift = (width * height / (8 * 8 * 2 * 2)) * mm + b
sampling_base = comfy.model_sampling.ModelSamplingFlux
sampling_type = comfy.model_sampling.CONST
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift=shift)
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class ModelSamplingContinuousEDM:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"sampling": (["v_prediction", "edm_playground_v2.5", "eps"],),
"sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
"sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, sampling, sigma_max, sigma_min):
m = model.clone()
latent_format = None
sigma_data = 1.0
if sampling == "eps":
sampling_type = comfy.model_sampling.EPS
elif sampling == "v_prediction":
sampling_type = comfy.model_sampling.V_PREDICTION
elif sampling == "edm_playground_v2.5":
sampling_type = comfy.model_sampling.EDM
sigma_data = 0.5
latent_format = comfy.latent_formats.SDXL_Playground_2_5()
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(sigma_min, sigma_max, sigma_data)
m.add_object_patch("model_sampling", model_sampling)
if latent_format is not None:
m.add_object_patch("latent_format", latent_format)
return (m, )
class ModelSamplingContinuousV:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"sampling": (["v_prediction"],),
"sigma_max": ("FLOAT", {"default": 500.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
"sigma_min": ("FLOAT", {"default": 0.03, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, sampling, sigma_max, sigma_min):
m = model.clone()
latent_format = None
sigma_data = 1.0
if sampling == "v_prediction":
sampling_type = comfy.model_sampling.V_PREDICTION
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousV, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(sigma_min, sigma_max, sigma_data)
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class RescaleCFG:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, multiplier):
def rescale_cfg(args):
cond = args["cond"]
uncond = args["uncond"]
cond_scale = args["cond_scale"]
sigma = args["sigma"]
sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
x_orig = args["input"]
#rescale cfg has to be done on v-pred model output
x = x_orig / (sigma * sigma + 1.0)
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
#rescalecfg
x_cfg = uncond + cond_scale * (cond - uncond)
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)
x_rescaled = x_cfg * (ro_pos / ro_cfg)
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)
m = model.clone()
m.set_model_sampler_cfg_function(rescale_cfg)
return (m, )
NODE_CLASS_MAPPINGS = {
"ModelSamplingDiscrete": ModelSamplingDiscrete,
"ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
"ModelSamplingContinuousV": ModelSamplingContinuousV,
"ModelSamplingStableCascade": ModelSamplingStableCascade,
"ModelSamplingSD3": ModelSamplingSD3,
"ModelSamplingAuraFlow": ModelSamplingAuraFlow,
"ModelSamplingFlux": ModelSamplingFlux,
"RescaleCFG": RescaleCFG,
}