mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 10:25:16 +00:00
d76a04b6ea
This node is unfinished, SVD checkpoints saved with this node will work with ComfyUI but not with anything else.
107 lines
4.8 KiB
Python
107 lines
4.8 KiB
Python
import nodes
|
|
import torch
|
|
import comfy.utils
|
|
import comfy.sd
|
|
import folder_paths
|
|
import comfy_extras.nodes_model_merging
|
|
|
|
|
|
class ImageOnlyCheckpointLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
|
}}
|
|
RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE")
|
|
FUNCTION = "load_checkpoint"
|
|
|
|
CATEGORY = "loaders/video_models"
|
|
|
|
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
|
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
|
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
|
return (out[0], out[3], out[2])
|
|
|
|
|
|
class SVD_img2vid_Conditioning:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip_vision": ("CLIP_VISION",),
|
|
"init_image": ("IMAGE",),
|
|
"vae": ("VAE",),
|
|
"width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
"height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
"video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}),
|
|
"motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}),
|
|
"fps": ("INT", {"default": 6, "min": 1, "max": 1024}),
|
|
"augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01})
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "conditioning/video_models"
|
|
|
|
def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level):
|
|
output = clip_vision.encode_image(init_image)
|
|
pooled = output.image_embeds.unsqueeze(0)
|
|
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
|
encode_pixels = pixels[:,:,:,:3]
|
|
if augmentation_level > 0:
|
|
encode_pixels += torch.randn_like(pixels) * augmentation_level
|
|
t = vae.encode(encode_pixels)
|
|
positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]]
|
|
negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]]
|
|
latent = torch.zeros([video_frames, 4, height // 8, width // 8])
|
|
return (positive, negative, {"samples":latent})
|
|
|
|
class VideoLinearCFGGuidance:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "sampling/video_models"
|
|
|
|
def patch(self, model, min_cfg):
|
|
def linear_cfg(args):
|
|
cond = args["cond"]
|
|
uncond = args["uncond"]
|
|
cond_scale = args["cond_scale"]
|
|
|
|
scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1))
|
|
return uncond + scale * (cond - uncond)
|
|
|
|
m = model.clone()
|
|
m.set_model_sampler_cfg_function(linear_cfg)
|
|
return (m, )
|
|
|
|
class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave):
|
|
CATEGORY = "_for_testing"
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"clip_vision": ("CLIP_VISION",),
|
|
"vae": ("VAE",),
|
|
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
|
|
|
def save(self, model, clip_vision, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
|
comfy_extras.nodes_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
|
|
return {}
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader,
|
|
"SVD_img2vid_Conditioning": SVD_img2vid_Conditioning,
|
|
"VideoLinearCFGGuidance": VideoLinearCFGGuidance,
|
|
"ImageOnlyCheckpointSave": ImageOnlyCheckpointSave,
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)",
|
|
}
|