ComfyUI/comfy/graph.py
guill 5cfe38f41c
Execution Model Inversion (#2666)
* Execution Model Inversion

This PR inverts the execution model -- from recursively calling nodes to
using a topological sort of the nodes. This change allows for
modification of the node graph during execution. This allows for two
major advantages:

    1. The implementation of lazy evaluation in nodes. For example, if a
    "Mix Images" node has a mix factor of exactly 0.0, the second image
    input doesn't even need to be evaluated (and visa-versa if the mix
    factor is 1.0).

    2. Dynamic expansion of nodes. This allows for the creation of dynamic
    "node groups". Specifically, custom nodes can return subgraphs that
    replace the original node in the graph. This is an incredibly
    powerful concept. Using this functionality, it was easy to
    implement:
        a. Components (a.k.a. node groups)
        b. Flow control (i.e. while loops) via tail recursion
        c. All-in-one nodes that replicate the WebUI functionality
        d. and more
    All of those were able to be implemented entirely via custom nodes,
    so those features are *not* a part of this PR. (There are some
    front-end changes that should occur before that functionality is
    made widely available, particularly around variant sockets.)

The custom nodes associated with this PR can be found at:
https://github.com/BadCafeCode/execution-inversion-demo-comfyui

Note that some of them require that variant socket types ("*") be
enabled.

* Allow `input_info` to be of type `None`

* Handle errors (like OOM) more gracefully

* Add a command-line argument to enable variants

This allows the use of nodes that have sockets of type '*' without
applying a patch to the code.

* Fix an overly aggressive assertion.

This could happen when attempting to evaluate `IS_CHANGED` for a node
during the creation of the cache (in order to create the cache key).

* Fix Pyright warnings

* Add execution model unit tests

* Fix issue with unused literals

Behavior should now match the master branch with regard to undeclared
inputs. Undeclared inputs that are socket connections will be used while
undeclared inputs that are literals will be ignored.

* Make custom VALIDATE_INPUTS skip normal validation

Additionally, if `VALIDATE_INPUTS` takes an argument named `input_types`,
that variable will be a dictionary of the socket type of all incoming
connections. If that argument exists, normal socket type validation will
not occur. This removes the last hurdle for enabling variant types
entirely from custom nodes, so I've removed that command-line option.

I've added appropriate unit tests for these changes.

* Fix example in unit test

This wouldn't have caused any issues in the unit test, but it would have
bugged the UI if someone copy+pasted it into their own node pack.

* Use fstrings instead of '%' formatting syntax

* Use custom exception types.

* Display an error for dependency cycles

Previously, dependency cycles that were created during node expansion
would cause the application to quit (due to an uncaught exception). Now,
we'll throw a proper error to the UI. We also make an attempt to 'blame'
the most relevant node in the UI.

* Add docs on when ExecutionBlocker should be used

* Remove unused functionality

* Rename ExecutionResult.SLEEPING to PENDING

* Remove superfluous function parameter

* Pass None for uneval inputs instead of default

This applies to `VALIDATE_INPUTS`, `check_lazy_status`, and lazy values
in evaluation functions.

* Add a test for mixed node expansion

This test ensures that a node that returns a combination of expanded
subgraphs and literal values functions correctly.

* Raise exception for bad get_node calls.

* Minor refactor of IsChangedCache.get

* Refactor `map_node_over_list` function

* Fix ui output for duplicated nodes

* Add documentation on `check_lazy_status`

* Add file for execution model unit tests

* Clean up Javascript code as per review

* Improve documentation

Converted some comments to docstrings as per review

* Add a new unit test for mixed lazy results

This test validates that when an output list is fed to a lazy node, the
node will properly evaluate previous nodes that are needed by any inputs
to the lazy node.

No code in the execution model has been changed. The test already
passes.

* Allow kwargs in VALIDATE_INPUTS functions

When kwargs are used, validation is skipped for all inputs as if they
had been mentioned explicitly.

* List cached nodes in `execution_cached` message

This was previously just bugged in this PR.
2024-08-15 11:21:11 -04:00

238 lines
10 KiB
Python

import nodes
from comfy.graph_utils import is_link
class DependencyCycleError(Exception):
pass
class NodeInputError(Exception):
pass
class NodeNotFoundError(Exception):
pass
class DynamicPrompt:
def __init__(self, original_prompt):
# The original prompt provided by the user
self.original_prompt = original_prompt
# Any extra pieces of the graph created during execution
self.ephemeral_prompt = {}
self.ephemeral_parents = {}
self.ephemeral_display = {}
def get_node(self, node_id):
if node_id in self.ephemeral_prompt:
return self.ephemeral_prompt[node_id]
if node_id in self.original_prompt:
return self.original_prompt[node_id]
raise NodeNotFoundError(f"Node {node_id} not found")
def has_node(self, node_id):
return node_id in self.original_prompt or node_id in self.ephemeral_prompt
def add_ephemeral_node(self, node_id, node_info, parent_id, display_id):
self.ephemeral_prompt[node_id] = node_info
self.ephemeral_parents[node_id] = parent_id
self.ephemeral_display[node_id] = display_id
def get_real_node_id(self, node_id):
while node_id in self.ephemeral_parents:
node_id = self.ephemeral_parents[node_id]
return node_id
def get_parent_node_id(self, node_id):
return self.ephemeral_parents.get(node_id, None)
def get_display_node_id(self, node_id):
while node_id in self.ephemeral_display:
node_id = self.ephemeral_display[node_id]
return node_id
def all_node_ids(self):
return set(self.original_prompt.keys()).union(set(self.ephemeral_prompt.keys()))
def get_original_prompt(self):
return self.original_prompt
def get_input_info(class_def, input_name):
valid_inputs = class_def.INPUT_TYPES()
input_info = None
input_category = None
if "required" in valid_inputs and input_name in valid_inputs["required"]:
input_category = "required"
input_info = valid_inputs["required"][input_name]
elif "optional" in valid_inputs and input_name in valid_inputs["optional"]:
input_category = "optional"
input_info = valid_inputs["optional"][input_name]
elif "hidden" in valid_inputs and input_name in valid_inputs["hidden"]:
input_category = "hidden"
input_info = valid_inputs["hidden"][input_name]
if input_info is None:
return None, None, None
input_type = input_info[0]
if len(input_info) > 1:
extra_info = input_info[1]
else:
extra_info = {}
return input_type, input_category, extra_info
class TopologicalSort:
def __init__(self, dynprompt):
self.dynprompt = dynprompt
self.pendingNodes = {}
self.blockCount = {} # Number of nodes this node is directly blocked by
self.blocking = {} # Which nodes are blocked by this node
def get_input_info(self, unique_id, input_name):
class_type = self.dynprompt.get_node(unique_id)["class_type"]
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
return get_input_info(class_def, input_name)
def make_input_strong_link(self, to_node_id, to_input):
inputs = self.dynprompt.get_node(to_node_id)["inputs"]
if to_input not in inputs:
raise NodeInputError(f"Node {to_node_id} says it needs input {to_input}, but there is no input to that node at all")
value = inputs[to_input]
if not is_link(value):
raise NodeInputError(f"Node {to_node_id} says it needs input {to_input}, but that value is a constant")
from_node_id, from_socket = value
self.add_strong_link(from_node_id, from_socket, to_node_id)
def add_strong_link(self, from_node_id, from_socket, to_node_id):
self.add_node(from_node_id)
if to_node_id not in self.blocking[from_node_id]:
self.blocking[from_node_id][to_node_id] = {}
self.blockCount[to_node_id] += 1
self.blocking[from_node_id][to_node_id][from_socket] = True
def add_node(self, unique_id, include_lazy=False, subgraph_nodes=None):
if unique_id in self.pendingNodes:
return
self.pendingNodes[unique_id] = True
self.blockCount[unique_id] = 0
self.blocking[unique_id] = {}
inputs = self.dynprompt.get_node(unique_id)["inputs"]
for input_name in inputs:
value = inputs[input_name]
if is_link(value):
from_node_id, from_socket = value
if subgraph_nodes is not None and from_node_id not in subgraph_nodes:
continue
input_type, input_category, input_info = self.get_input_info(unique_id, input_name)
is_lazy = input_info is not None and "lazy" in input_info and input_info["lazy"]
if include_lazy or not is_lazy:
self.add_strong_link(from_node_id, from_socket, unique_id)
def get_ready_nodes(self):
return [node_id for node_id in self.pendingNodes if self.blockCount[node_id] == 0]
def pop_node(self, unique_id):
del self.pendingNodes[unique_id]
for blocked_node_id in self.blocking[unique_id]:
self.blockCount[blocked_node_id] -= 1
del self.blocking[unique_id]
def is_empty(self):
return len(self.pendingNodes) == 0
class ExecutionList(TopologicalSort):
"""
ExecutionList implements a topological dissolve of the graph. After a node is staged for execution,
it can still be returned to the graph after having further dependencies added.
"""
def __init__(self, dynprompt, output_cache):
super().__init__(dynprompt)
self.output_cache = output_cache
self.staged_node_id = None
def add_strong_link(self, from_node_id, from_socket, to_node_id):
if self.output_cache.get(from_node_id) is not None:
# Nothing to do
return
super().add_strong_link(from_node_id, from_socket, to_node_id)
def stage_node_execution(self):
assert self.staged_node_id is None
if self.is_empty():
return None, None, None
available = self.get_ready_nodes()
if len(available) == 0:
cycled_nodes = self.get_nodes_in_cycle()
# Because cycles composed entirely of static nodes are caught during initial validation,
# we will 'blame' the first node in the cycle that is not a static node.
blamed_node = cycled_nodes[0]
for node_id in cycled_nodes:
display_node_id = self.dynprompt.get_display_node_id(node_id)
if display_node_id != node_id:
blamed_node = display_node_id
break
ex = DependencyCycleError("Dependency cycle detected")
error_details = {
"node_id": blamed_node,
"exception_message": str(ex),
"exception_type": "graph.DependencyCycleError",
"traceback": [],
"current_inputs": []
}
return None, error_details, ex
next_node = available[0]
# If an output node is available, do that first.
# Technically this has no effect on the overall length of execution, but it feels better as a user
# for a PreviewImage to display a result as soon as it can
# Some other heuristics could probably be used here to improve the UX further.
for node_id in available:
class_type = self.dynprompt.get_node(node_id)["class_type"]
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
next_node = node_id
break
self.staged_node_id = next_node
return self.staged_node_id, None, None
def unstage_node_execution(self):
assert self.staged_node_id is not None
self.staged_node_id = None
def complete_node_execution(self):
node_id = self.staged_node_id
self.pop_node(node_id)
self.staged_node_id = None
def get_nodes_in_cycle(self):
# We'll dissolve the graph in reverse topological order to leave only the nodes in the cycle.
# We're skipping some of the performance optimizations from the original TopologicalSort to keep
# the code simple (and because having a cycle in the first place is a catastrophic error)
blocked_by = { node_id: {} for node_id in self.pendingNodes }
for from_node_id in self.blocking:
for to_node_id in self.blocking[from_node_id]:
if True in self.blocking[from_node_id][to_node_id].values():
blocked_by[to_node_id][from_node_id] = True
to_remove = [node_id for node_id in blocked_by if len(blocked_by[node_id]) == 0]
while len(to_remove) > 0:
for node_id in to_remove:
for to_node_id in blocked_by:
if node_id in blocked_by[to_node_id]:
del blocked_by[to_node_id][node_id]
del blocked_by[node_id]
to_remove = [node_id for node_id in blocked_by if len(blocked_by[node_id]) == 0]
return list(blocked_by.keys())
class ExecutionBlocker:
"""
Return this from a node and any users will be blocked with the given error message.
If the message is None, execution will be blocked silently instead.
Generally, you should avoid using this functionality unless absolutely necessary. Whenever it's
possible, a lazy input will be more efficient and have a better user experience.
This functionality is useful in two cases:
1. You want to conditionally prevent an output node from executing. (Particularly a built-in node
like SaveImage. For your own output nodes, I would recommend just adding a BOOL input and using
lazy evaluation to let it conditionally disable itself.)
2. You have a node with multiple possible outputs, some of which are invalid and should not be used.
(I would recommend not making nodes like this in the future -- instead, make multiple nodes with
different outputs. Unfortunately, there are several popular existing nodes using this pattern.)
"""
def __init__(self, message):
self.message = message