mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 18:35:17 +00:00
9b93b920be
The created checkpoints contain workflow metadata that can be loaded by dragging them on top of the UI or loading them with the "Load" button. Checkpoints will be saved in fp16 or fp32 depending on the format ComfyUI is using for inference on your hardware. To force fp32 use: --force-fp32 Anything that patches the model weights like merging or loras will be saved. The output directory is currently set to: output/checkpoints but that might change in the future.
79 lines
2.5 KiB
Python
79 lines
2.5 KiB
Python
import torch
|
|
from . import model_base
|
|
from . import utils
|
|
|
|
|
|
def state_dict_key_replace(state_dict, keys_to_replace):
|
|
for x in keys_to_replace:
|
|
if x in state_dict:
|
|
state_dict[keys_to_replace[x]] = state_dict.pop(x)
|
|
return state_dict
|
|
|
|
def state_dict_prefix_replace(state_dict, replace_prefix):
|
|
for rp in replace_prefix:
|
|
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
|
|
for x in replace:
|
|
state_dict[x[1]] = state_dict.pop(x[0])
|
|
return state_dict
|
|
|
|
|
|
class ClipTarget:
|
|
def __init__(self, tokenizer, clip):
|
|
self.clip = clip
|
|
self.tokenizer = tokenizer
|
|
self.params = {}
|
|
|
|
class BASE:
|
|
unet_config = {}
|
|
unet_extra_config = {
|
|
"num_heads": -1,
|
|
"num_head_channels": 64,
|
|
}
|
|
|
|
clip_prefix = []
|
|
clip_vision_prefix = None
|
|
noise_aug_config = None
|
|
|
|
@classmethod
|
|
def matches(s, unet_config):
|
|
for k in s.unet_config:
|
|
if s.unet_config[k] != unet_config[k]:
|
|
return False
|
|
return True
|
|
|
|
def v_prediction(self, state_dict):
|
|
return False
|
|
|
|
def inpaint_model(self):
|
|
return self.unet_config["in_channels"] > 4
|
|
|
|
def __init__(self, unet_config):
|
|
self.unet_config = unet_config
|
|
self.latent_format = self.latent_format()
|
|
for x in self.unet_extra_config:
|
|
self.unet_config[x] = self.unet_extra_config[x]
|
|
|
|
def get_model(self, state_dict):
|
|
if self.inpaint_model():
|
|
return model_base.SDInpaint(self, v_prediction=self.v_prediction(state_dict))
|
|
elif self.noise_aug_config is not None:
|
|
return model_base.SD21UNCLIP(self, self.noise_aug_config, v_prediction=self.v_prediction(state_dict))
|
|
else:
|
|
return model_base.BaseModel(self, v_prediction=self.v_prediction(state_dict))
|
|
|
|
def process_clip_state_dict(self, state_dict):
|
|
return state_dict
|
|
|
|
def process_clip_state_dict_for_saving(self, state_dict):
|
|
replace_prefix = {"": "cond_stage_model."}
|
|
return state_dict_prefix_replace(state_dict, replace_prefix)
|
|
|
|
def process_unet_state_dict_for_saving(self, state_dict):
|
|
replace_prefix = {"": "model.diffusion_model."}
|
|
return state_dict_prefix_replace(state_dict, replace_prefix)
|
|
|
|
def process_vae_state_dict_for_saving(self, state_dict):
|
|
replace_prefix = {"": "first_stage_model."}
|
|
return state_dict_prefix_replace(state_dict, replace_prefix)
|
|
|