mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-06-07 12:02:10 +08:00

* Add Ideogram generate node. * Add staging api. * Add API_NODE and common error for missing auth token (#5) * Add Minimax Video Generation + Async Task queue polling example (#6) * [Minimax] Show video preview and embed workflow in ouput (#7) * Remove uv.lock * Remove polling operations. * Revert "Remove polling operations." * Update stubs. * Added Ideogram and Minimax back in. * Added initial BFL Flux 1.1 [pro] Ultra node (#11) * Add --comfy-api-base launch arg (#13) * Add instructions for staging development. (#14) * remove validation to make it easier to run against LAN copies of the API * Manually add BFL polling status response schema (#15) * Add function for uploading files. (#18) * Add Luma nodes (#16) * Refactor util functions (#20) * Add VIDEO type (#21) * Add rest of Luma node functionality (#19) * Fix image_luma_ref not working (#28) * [Bug] Remove duplicated option T2V-01 in MinimaxTextToVideoNode (#31) * Add utils to map from pydantic model fields to comfy node inputs (#30) * add veo2, bump av req (#32) * Add Recraft nodes (#29) * Add Kling Nodes (#12) * Add Camera Concepts (luma_concepts) to Luma Video nodes (#33) * Add Runway nodes (#17) * Convert Minimax node to use VIDEO output type (#34) * Standard `CATEGORY` system for api nodes (#35) * Set `Content-Type` header when uploading files (#36) * add better error propagation to veo2 (#37) * Add Realistic Image and Logo Raster styles for Recraft v3 (#38) * Fix runway image upload and progress polling (#39) * Fix image upload for Luma: only include `Content-Type` header field if it's set explicitly (#40) * Moved Luma nodes to nodes_luma.py (#47) * Moved Recraft nodes to nodes_recraft.py (#48) * Add Pixverse nodes (#46) * Move and fix BFL nodes to node_bfl.py (#49) * Move and edit Minimax node to nodes_minimax.py (#50) * Add Minimax Image to Video node + Cleanup (#51) * Add Recraft Text to Vector node, add Save SVG node to handle its output (#53) * Added pixverse_template support to Pixverse Text to Video node (#54) * Added Recraft Controls + Recraft Color RGB nodes (#57) * split remaining nodes out of nodes_api, make utility lib, refactor ideogram (#61) * Add types and doctstrings to utils file (#64) * Fix: `PollingOperation` progress bar update progress by absolute value (#65) * Use common download function in kling nodes module (#67) * Fix: Luma video nodes in `api nodes/image` category (#68) * Set request type explicitly (#66) * Add `control_after_generate` to all seed inputs (#69) * Fix bug: deleting `Content-Type` when property does not exist (#73) * Add preview to Save SVG node (#74) * change default poll interval (#76), rework veo2 * Add Pixverse and updated Kling types (#75) * Added Pixverse Image to VIdeo node (#77) * Add Pixverse Transition Video node (#79) * Proper ray-1-6 support as fix has been applied in backend (#80) * Added Recraft Style - Infinite Style Library node (#82) * add ideogram v3 (#83) * [Kling] Split Camera Control config to its own node (#81) * Add Pika i2v and t2v nodes (#52) * Temporary Fix for Runway (#87) * Added Stability Stable Image Ultra node (#86) * Remove Runway nodes (#88) * Fix: Prompt text can't be validated in Kling nodes when using primitive nodes (#90) * Fix: typo in node name "Stabiliy" => "Stability" (#91) * Add String (Multiline) node (#93) * Update Pika Duration and Resolution options (#94) * Change base branch to master. Not main. (#95) * Fix UploadRequest file_name param (#98) * Removed Infinite Style Library until later (#99) * fix ideogram style types (#100) * fix multi image return (#101) * add metadata saving to SVG (#102) * Bump templates version to include API node template workflows (#104) * Fix: `download_url_to_video_output` return type (#103) * fix 4o generation bug (#106) * Serve SVG files directly (#107) * Add a bunch of nodes, 3 ready to use, the rest waiting for endpoint support (#108) * Revert "Serve SVG files directly" (#111) * Expose 4 remaining Recraft nodes (#112) * [Kling] Add `Duration` and `Video ID` outputs (#105) * Fix: datamodel-codegen sets string#binary type to non-existent `bytes_aliased` variable (#114) * Fix: Dall-e 2 not setting request content-type dynamically (#113) * Default request timeout: one hour. (#116) * Add Kling nodes: camera control, start-end frame, lip-sync, video extend (#115) * Add 8 nodes - 4 BFL, 4 Stability (#117) * Fix error for Recraft ImageToImage error for nonexistent random_seed param (#118) * Add remaining Pika nodes (#119) * Make controls input work for Recraft Image to Image node (#120) * Use upstream PR: Support saving Comfy VIDEO type to buffer (#123) * Use Upstream PR: "Fix: Error creating video when sliced audio tensor chunks are non-c-contiguous" (#127) * Improve audio upload utils (#128) * Fix: Nested `AnyUrl` in request model cannot be serialized (Kling, Runway) (#129) * Show errors and API output URLs to the user (change log levels) (#131) * Fix: Luma I2I fails when weight is <=0.01 (#132) * Change category of `LumaConcepts` node from image to video (#133) * Fix: `image.shape` accessed before `image` is null-checked (#134) * Apply small fixes and most prompt validation (if needed to avoid API error) (#135) * Node name/category modifications (#140) * Add back Recraft Style - Infinite Style Library node (#141) * Fixed Kling: Check attributes of pydantic types. (#144) * Bump `comfyui-workflow-templates` version (#142) * [Kling] Print response data when error validating response (#146) * Fix: error validating Kling image response, trying to use `"key" in` on Pydantic class instance (#147) * [Kling] Fix: Correct/verify supported subset of input combos in Kling nodes (#149) * [Kling] Fix typo in node description (#150) * [Kling] Fix: CFG min/max not being enforced (#151) * Rebase launch-rebase (private) on prep-branch (public copy of master) (#153) * Bump templates version (#154) * Fix: Kling image gen nodes don't return entire batch when `n` > 1 (#152) * Remove pixverse_template from PixVerse Transition Video node (#155) * Invert image_weight value on Luma Image to Image node (#156) * Invert and resize mask for Ideogram V3 node to match masking conventions (#158) * [Kling] Fix: image generation nodes not returning Tuple (#159) * [Bug] [Kling] Fix Kling camera control (#161) * Kling Image Gen v2 + improve node descriptions for Flux/OpenAI (#160) * [Kling] Don't return video_id from dual effect video (#162) * Bump frontend to 1.18.8 (#163) * Use 3.9 compat syntax (#164) * Use Python 3.10 * add example env var * Update templates to 0.1.11 * Bump frontend to 1.18.9 --------- Co-authored-by: Robin Huang <robin.j.huang@gmail.com> Co-authored-by: Christian Byrne <cbyrne@comfy.org> Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
298 lines
7.7 KiB
Python
298 lines
7.7 KiB
Python
from typing import Optional
|
|
from enum import Enum
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from comfy.comfy_types.node_typing import IO
|
|
from comfy_api_nodes.mapper_utils import model_field_to_node_input
|
|
|
|
|
|
def test_model_field_to_float_input():
|
|
"""Tests mapping a float field with constraints."""
|
|
|
|
class ModelWithFloatField(BaseModel):
|
|
cfg_scale: Optional[float] = Field(
|
|
default=0.5,
|
|
description="Flexibility in video generation",
|
|
ge=0.0,
|
|
le=1.0,
|
|
multiple_of=0.001,
|
|
)
|
|
|
|
expected_output = (
|
|
IO.FLOAT,
|
|
{
|
|
"default": 0.5,
|
|
"tooltip": "Flexibility in video generation",
|
|
"min": 0.0,
|
|
"max": 1.0,
|
|
"step": 0.001,
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(
|
|
IO.FLOAT, ModelWithFloatField, "cfg_scale"
|
|
)
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_float_input_no_constraints():
|
|
"""Tests mapping a float field with no constraints."""
|
|
|
|
class ModelWithFloatField(BaseModel):
|
|
cfg_scale: Optional[float] = Field(default=0.5)
|
|
|
|
expected_output = (
|
|
IO.FLOAT,
|
|
{
|
|
"default": 0.5,
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(
|
|
IO.FLOAT, ModelWithFloatField, "cfg_scale"
|
|
)
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_int_input():
|
|
"""Tests mapping an int field with constraints."""
|
|
|
|
class ModelWithIntField(BaseModel):
|
|
num_frames: Optional[int] = Field(
|
|
default=10,
|
|
description="Number of frames to generate",
|
|
ge=1,
|
|
le=100,
|
|
multiple_of=1,
|
|
)
|
|
|
|
expected_output = (
|
|
IO.INT,
|
|
{
|
|
"default": 10,
|
|
"tooltip": "Number of frames to generate",
|
|
"min": 1,
|
|
"max": 100,
|
|
"step": 1,
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(IO.INT, ModelWithIntField, "num_frames")
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_string_input():
|
|
"""Tests mapping a string field."""
|
|
|
|
class ModelWithStringField(BaseModel):
|
|
prompt: Optional[str] = Field(
|
|
default="A beautiful sunset over a calm ocean",
|
|
description="A prompt for the video generation",
|
|
)
|
|
|
|
expected_output = (
|
|
IO.STRING,
|
|
{
|
|
"default": "A beautiful sunset over a calm ocean",
|
|
"tooltip": "A prompt for the video generation",
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(IO.STRING, ModelWithStringField, "prompt")
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_string_input_multiline():
|
|
"""Tests mapping a string field."""
|
|
|
|
class ModelWithStringField(BaseModel):
|
|
prompt: Optional[str] = Field(
|
|
default="A beautiful sunset over a calm ocean",
|
|
description="A prompt for the video generation",
|
|
)
|
|
|
|
expected_output = (
|
|
IO.STRING,
|
|
{
|
|
"default": "A beautiful sunset over a calm ocean",
|
|
"tooltip": "A prompt for the video generation",
|
|
"multiline": True,
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(
|
|
IO.STRING, ModelWithStringField, "prompt", multiline=True
|
|
)
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_combo_input():
|
|
"""Tests mapping a combo field."""
|
|
|
|
class MockEnum(str, Enum):
|
|
option_1 = "option 1"
|
|
option_2 = "option 2"
|
|
option_3 = "option 3"
|
|
|
|
class ModelWithComboField(BaseModel):
|
|
model_name: Optional[MockEnum] = Field("option 1", description="Model Name")
|
|
|
|
expected_output = (
|
|
IO.COMBO,
|
|
{
|
|
"options": ["option 1", "option 2", "option 3"],
|
|
"default": "option 1",
|
|
"tooltip": "Model Name",
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(
|
|
IO.COMBO, ModelWithComboField, "model_name", enum_type=MockEnum
|
|
)
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_combo_input_no_options():
|
|
"""Tests mapping a combo field with no options."""
|
|
|
|
class ModelWithComboField(BaseModel):
|
|
model_name: Optional[str] = Field(description="Model Name")
|
|
|
|
expected_output = (
|
|
IO.COMBO,
|
|
{
|
|
"tooltip": "Model Name",
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(
|
|
IO.COMBO, ModelWithComboField, "model_name"
|
|
)
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_image_input():
|
|
"""Tests mapping an image field."""
|
|
|
|
class ModelWithImageField(BaseModel):
|
|
image: Optional[str] = Field(
|
|
default=None,
|
|
description="An image for the video generation",
|
|
)
|
|
|
|
expected_output = (
|
|
IO.IMAGE,
|
|
{
|
|
"default": None,
|
|
"tooltip": "An image for the video generation",
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(IO.IMAGE, ModelWithImageField, "image")
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_node_input_no_description():
|
|
"""Tests mapping a field with no description."""
|
|
|
|
class ModelWithNoDescriptionField(BaseModel):
|
|
field: Optional[str] = Field(default="default value")
|
|
|
|
expected_output = (
|
|
IO.STRING,
|
|
{
|
|
"default": "default value",
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(
|
|
IO.STRING, ModelWithNoDescriptionField, "field"
|
|
)
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_node_input_no_default():
|
|
"""Tests mapping a field with no default."""
|
|
|
|
class ModelWithNoDefaultField(BaseModel):
|
|
field: Optional[str] = Field(description="A field with no default")
|
|
|
|
expected_output = (
|
|
IO.STRING,
|
|
{
|
|
"tooltip": "A field with no default",
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(
|
|
IO.STRING, ModelWithNoDefaultField, "field"
|
|
)
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_node_input_no_metadata():
|
|
"""Tests mapping a field with no metadata or properties defined on the schema."""
|
|
|
|
class ModelWithNoMetadataField(BaseModel):
|
|
field: Optional[str] = Field()
|
|
|
|
expected_output = (
|
|
IO.STRING,
|
|
{},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(
|
|
IO.STRING, ModelWithNoMetadataField, "field"
|
|
)
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|
|
|
|
|
|
def test_model_field_to_node_input_default_is_none():
|
|
"""
|
|
Tests mapping a field with a default of `None`.
|
|
I.e., the default field should be included as the schema explicitly sets it to `None`.
|
|
"""
|
|
|
|
class ModelWithNoneDefaultField(BaseModel):
|
|
field: Optional[str] = Field(
|
|
default=None, description="A field with a default of None"
|
|
)
|
|
|
|
expected_output = (
|
|
IO.STRING,
|
|
{
|
|
"default": None,
|
|
"tooltip": "A field with a default of None",
|
|
},
|
|
)
|
|
|
|
actual_output = model_field_to_node_input(
|
|
IO.STRING, ModelWithNoneDefaultField, "field"
|
|
)
|
|
|
|
assert actual_output[0] == expected_output[0]
|
|
assert actual_output[1] == expected_output[1]
|