mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-03-14 13:17:32 +00:00
156 lines
7.8 KiB
Python
156 lines
7.8 KiB
Python
from comfy import sd1_clip
|
|
import comfy.model_management
|
|
import comfy.text_encoders.llama
|
|
from transformers import LlamaTokenizerFast
|
|
import torch
|
|
import os
|
|
import numbers
|
|
|
|
|
|
def llama_detect(state_dict, prefix=""):
|
|
out = {}
|
|
t5_key = "{}model.norm.weight".format(prefix)
|
|
if t5_key in state_dict:
|
|
out["dtype_llama"] = state_dict[t5_key].dtype
|
|
|
|
scaled_fp8_key = "{}scaled_fp8".format(prefix)
|
|
if scaled_fp8_key in state_dict:
|
|
out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
|
|
|
|
return out
|
|
|
|
|
|
class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
|
|
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256):
|
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
|
|
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, min_length=min_length)
|
|
|
|
class LLAMAModel(sd1_clip.SDClipModel):
|
|
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
|
|
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
|
|
if llama_scaled_fp8 is not None:
|
|
model_options = model_options.copy()
|
|
model_options["scaled_fp8"] = llama_scaled_fp8
|
|
|
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 128000, "pad": 128258}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
|
|
|
|
|
class HunyuanVideoTokenizer:
|
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
|
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
|
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
|
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens
|
|
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
|
|
|
|
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
|
|
out = {}
|
|
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
|
|
|
if llama_template is None:
|
|
llama_text = self.llama_template.format(text)
|
|
else:
|
|
llama_text = llama_template.format(text)
|
|
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids)
|
|
embed_count = 0
|
|
for r in llama_text_tokens:
|
|
for i in range(len(r)):
|
|
if r[i][0] == 128257:
|
|
if image_embeds is not None and embed_count < image_embeds.shape[0]:
|
|
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image", "image_interleave": image_interleave},) + r[i][1:]
|
|
embed_count += 1
|
|
out["llama"] = llama_text_tokens
|
|
return out
|
|
|
|
def untokenize(self, token_weight_pair):
|
|
return self.clip_l.untokenize(token_weight_pair)
|
|
|
|
def state_dict(self):
|
|
return {}
|
|
|
|
|
|
class HunyuanVideoClipModel(torch.nn.Module):
|
|
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
|
|
super().__init__()
|
|
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
|
|
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
|
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
|
self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options)
|
|
self.dtypes = set([dtype, dtype_llama])
|
|
|
|
def set_clip_options(self, options):
|
|
self.clip_l.set_clip_options(options)
|
|
self.llama.set_clip_options(options)
|
|
|
|
def reset_clip_options(self):
|
|
self.clip_l.reset_clip_options()
|
|
self.llama.reset_clip_options()
|
|
|
|
def encode_token_weights(self, token_weight_pairs):
|
|
token_weight_pairs_l = token_weight_pairs["l"]
|
|
token_weight_pairs_llama = token_weight_pairs["llama"]
|
|
|
|
llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama)
|
|
|
|
template_end = 0
|
|
extra_template_end = 0
|
|
extra_sizes = 0
|
|
user_end = 9999999999999
|
|
images = []
|
|
|
|
tok_pairs = token_weight_pairs_llama[0]
|
|
for i, v in enumerate(tok_pairs):
|
|
elem = v[0]
|
|
if not torch.is_tensor(elem):
|
|
if isinstance(elem, numbers.Integral):
|
|
if elem == 128006:
|
|
if tok_pairs[i + 1][0] == 882:
|
|
if tok_pairs[i + 2][0] == 128007:
|
|
template_end = i + 2
|
|
user_end = -1
|
|
if elem == 128009 and user_end == -1:
|
|
user_end = i + 1
|
|
else:
|
|
if elem.get("original_type") == "image":
|
|
elem_size = elem.get("data").shape[0]
|
|
if template_end > 0:
|
|
if user_end == -1:
|
|
extra_template_end += elem_size - 1
|
|
else:
|
|
image_start = i + extra_sizes
|
|
image_end = i + elem_size + extra_sizes
|
|
images.append((image_start, image_end, elem.get("image_interleave", 1)))
|
|
extra_sizes += elem_size - 1
|
|
|
|
if llama_out.shape[1] > (template_end + 2):
|
|
if tok_pairs[template_end + 1][0] == 271:
|
|
template_end += 2
|
|
llama_output = llama_out[:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
|
|
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
|
|
if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]):
|
|
llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements
|
|
|
|
if len(images) > 0:
|
|
out = []
|
|
for i in images:
|
|
out.append(llama_out[:, i[0]: i[1]: i[2]])
|
|
llama_output = torch.cat(out + [llama_output], dim=1)
|
|
|
|
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
|
return llama_output, l_pooled, llama_extra_out
|
|
|
|
def load_sd(self, sd):
|
|
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
|
return self.clip_l.load_sd(sd)
|
|
else:
|
|
return self.llama.load_sd(sd)
|
|
|
|
|
|
def hunyuan_video_clip(dtype_llama=None, llama_scaled_fp8=None):
|
|
class HunyuanVideoClipModel_(HunyuanVideoClipModel):
|
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
|
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
|
|
model_options = model_options.copy()
|
|
model_options["llama_scaled_fp8"] = llama_scaled_fp8
|
|
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
|
return HunyuanVideoClipModel_
|