mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-03-15 05:57:20 +00:00
468 lines
18 KiB
Python
468 lines
18 KiB
Python
import io
|
|
import nodes
|
|
import node_helpers
|
|
import torch
|
|
import comfy.model_management
|
|
import comfy.model_sampling
|
|
import comfy.utils
|
|
import math
|
|
import numpy as np
|
|
import av
|
|
from comfy.ldm.lightricks.symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
|
|
|
|
class EmptyLTXVLatentVideo:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
|
|
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
|
|
"length": ("INT", {"default": 97, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "generate"
|
|
|
|
CATEGORY = "latent/video/ltxv"
|
|
|
|
def generate(self, width, height, length, batch_size=1):
|
|
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device())
|
|
return ({"samples": latent}, )
|
|
|
|
|
|
class LTXVImgToVideo:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"vae": ("VAE",),
|
|
"image": ("IMAGE",),
|
|
"width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
|
|
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
|
|
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
|
|
CATEGORY = "conditioning/video_models"
|
|
FUNCTION = "generate"
|
|
|
|
def generate(self, positive, negative, image, vae, width, height, length, batch_size):
|
|
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
|
encode_pixels = pixels[:, :, :, :3]
|
|
t = vae.encode(encode_pixels)
|
|
|
|
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device())
|
|
latent[:, :, :t.shape[2]] = t
|
|
|
|
conditioning_latent_frames_mask = torch.ones(
|
|
(batch_size, 1, latent.shape[2], 1, 1),
|
|
dtype=torch.float32,
|
|
device=latent.device,
|
|
)
|
|
conditioning_latent_frames_mask[:, :, :t.shape[2]] = 0
|
|
|
|
return (positive, negative, {"samples": latent, "noise_mask": conditioning_latent_frames_mask}, )
|
|
|
|
|
|
def conditioning_get_any_value(conditioning, key, default=None):
|
|
for t in conditioning:
|
|
if key in t[1]:
|
|
return t[1][key]
|
|
return default
|
|
|
|
|
|
def get_noise_mask(latent):
|
|
noise_mask = latent.get("noise_mask", None)
|
|
latent_image = latent["samples"]
|
|
if noise_mask is None:
|
|
batch_size, _, latent_length, _, _ = latent_image.shape
|
|
noise_mask = torch.ones(
|
|
(batch_size, 1, latent_length, 1, 1),
|
|
dtype=torch.float32,
|
|
device=latent_image.device,
|
|
)
|
|
else:
|
|
noise_mask = noise_mask.clone()
|
|
return noise_mask
|
|
|
|
def get_keyframe_idxs(cond):
|
|
keyframe_idxs = conditioning_get_any_value(cond, "keyframe_idxs", None)
|
|
if keyframe_idxs is None:
|
|
return None, 0
|
|
num_keyframes = torch.unique(keyframe_idxs[:, 0]).shape[0]
|
|
return keyframe_idxs, num_keyframes
|
|
|
|
class LTXVAddGuide:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"vae": ("VAE",),
|
|
"latent": ("LATENT",),
|
|
"image": ("IMAGE", {"tooltip": "Image or video to condition the latent video on. Must be 8*n + 1 frames." \
|
|
"If the video is not 8*n + 1 frames, it will be cropped to the nearest 8*n + 1 frames."}),
|
|
"frame_idx": ("INT", {"default": 0, "min": -9999, "max": 9999,
|
|
"tooltip": "Frame index to start the conditioning at. Must be divisible by 8. " \
|
|
"If a frame is not divisible by 8, it will be rounded down to the nearest multiple of 8. " \
|
|
"Negative values are counted from the end of the video."}),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
|
|
CATEGORY = "conditioning/video_models"
|
|
FUNCTION = "generate"
|
|
|
|
def __init__(self):
|
|
self._num_prefix_frames = 2
|
|
self._patchifier = SymmetricPatchifier(1)
|
|
|
|
def encode(self, vae, latent_width, latent_height, images, scale_factors):
|
|
time_scale_factor, width_scale_factor, height_scale_factor = scale_factors
|
|
images = images[:(images.shape[0] - 1) // time_scale_factor * time_scale_factor + 1]
|
|
pixels = comfy.utils.common_upscale(images.movedim(-1, 1), latent_width * width_scale_factor, latent_height * height_scale_factor, "bilinear", crop="disabled").movedim(1, -1)
|
|
encode_pixels = pixels[:, :, :, :3]
|
|
t = vae.encode(encode_pixels)
|
|
return encode_pixels, t
|
|
|
|
def get_latent_index(self, cond, latent_length, frame_idx, scale_factors):
|
|
time_scale_factor, _, _ = scale_factors
|
|
_, num_keyframes = get_keyframe_idxs(cond)
|
|
latent_count = latent_length - num_keyframes
|
|
frame_idx = frame_idx if frame_idx >= 0 else max((latent_count - 1) * 8 + 1 + frame_idx, 0)
|
|
frame_idx = frame_idx // time_scale_factor * time_scale_factor # frame index must be divisible by 8
|
|
|
|
latent_idx = (frame_idx + time_scale_factor - 1) // time_scale_factor
|
|
|
|
return frame_idx, latent_idx
|
|
|
|
def add_keyframe_index(self, cond, frame_idx, guiding_latent, scale_factors):
|
|
keyframe_idxs, _ = get_keyframe_idxs(cond)
|
|
_, latent_coords = self._patchifier.patchify(guiding_latent)
|
|
pixel_coords = latent_to_pixel_coords(latent_coords, scale_factors, True)
|
|
pixel_coords[:, 0] += frame_idx
|
|
if keyframe_idxs is None:
|
|
keyframe_idxs = pixel_coords
|
|
else:
|
|
keyframe_idxs = torch.cat([keyframe_idxs, pixel_coords], dim=2)
|
|
return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs})
|
|
|
|
def append_keyframe(self, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors):
|
|
positive = self.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors)
|
|
negative = self.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors)
|
|
|
|
mask = torch.full(
|
|
(noise_mask.shape[0], 1, guiding_latent.shape[2], 1, 1),
|
|
1.0 - strength,
|
|
dtype=noise_mask.dtype,
|
|
device=noise_mask.device,
|
|
)
|
|
|
|
latent_image = torch.cat([latent_image, guiding_latent], dim=2)
|
|
noise_mask = torch.cat([noise_mask, mask], dim=2)
|
|
return positive, negative, latent_image, noise_mask
|
|
|
|
def replace_latent_frames(self, latent_image, noise_mask, guiding_latent, latent_idx, strength):
|
|
cond_length = guiding_latent.shape[2]
|
|
assert latent_image.shape[2] >= latent_idx + cond_length, "Conditioning frames exceed the length of the latent sequence."
|
|
|
|
mask = torch.full(
|
|
(noise_mask.shape[0], 1, cond_length, 1, 1),
|
|
1.0 - strength,
|
|
dtype=noise_mask.dtype,
|
|
device=noise_mask.device,
|
|
)
|
|
|
|
latent_image = latent_image.clone()
|
|
noise_mask = noise_mask.clone()
|
|
|
|
latent_image[:, :, latent_idx : latent_idx + cond_length] = guiding_latent
|
|
noise_mask[:, :, latent_idx : latent_idx + cond_length] = mask
|
|
|
|
return latent_image, noise_mask
|
|
|
|
def generate(self, positive, negative, vae, latent, image, frame_idx, strength):
|
|
scale_factors = vae.downscale_index_formula
|
|
latent_image = latent["samples"]
|
|
noise_mask = get_noise_mask(latent)
|
|
|
|
_, _, latent_length, latent_height, latent_width = latent_image.shape
|
|
image, t = self.encode(vae, latent_width, latent_height, image, scale_factors)
|
|
|
|
frame_idx, latent_idx = self.get_latent_index(positive, latent_length, frame_idx, scale_factors)
|
|
assert latent_idx + t.shape[2] <= latent_length, "Conditioning frames exceed the length of the latent sequence."
|
|
|
|
if frame_idx == 0:
|
|
latent_image, noise_mask = self.replace_latent_frames(latent_image, noise_mask, t, latent_idx, strength)
|
|
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
|
|
|
|
|
|
num_prefix_frames = min(self._num_prefix_frames, t.shape[2])
|
|
|
|
positive, negative, latent_image, noise_mask = self.append_keyframe(
|
|
positive,
|
|
negative,
|
|
frame_idx,
|
|
latent_image,
|
|
noise_mask,
|
|
t[:, :, :num_prefix_frames],
|
|
strength,
|
|
scale_factors,
|
|
)
|
|
|
|
latent_idx += num_prefix_frames
|
|
|
|
t = t[:, :, num_prefix_frames:]
|
|
if t.shape[2] == 0:
|
|
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
|
|
|
|
latent_image, noise_mask = self.replace_latent_frames(
|
|
latent_image,
|
|
noise_mask,
|
|
t,
|
|
latent_idx,
|
|
strength,
|
|
)
|
|
|
|
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
|
|
|
|
|
|
class LTXVCropGuides:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"latent": ("LATENT",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
|
|
CATEGORY = "conditioning/video_models"
|
|
FUNCTION = "crop"
|
|
|
|
def __init__(self):
|
|
self._patchifier = SymmetricPatchifier(1)
|
|
|
|
def crop(self, positive, negative, latent):
|
|
latent_image = latent["samples"].clone()
|
|
noise_mask = get_noise_mask(latent)
|
|
|
|
_, num_keyframes = get_keyframe_idxs(positive)
|
|
|
|
latent_image = latent_image[:, :, :-num_keyframes]
|
|
noise_mask = noise_mask[:, :, :-num_keyframes]
|
|
|
|
positive = node_helpers.conditioning_set_values(positive, {"keyframe_idxs": None})
|
|
negative = node_helpers.conditioning_set_values(negative, {"keyframe_idxs": None})
|
|
|
|
return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},)
|
|
|
|
|
|
class LTXVConditioning:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"frame_rate": ("FLOAT", {"default": 25.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
|
|
RETURN_NAMES = ("positive", "negative")
|
|
FUNCTION = "append"
|
|
|
|
CATEGORY = "conditioning/video_models"
|
|
|
|
def append(self, positive, negative, frame_rate):
|
|
positive = node_helpers.conditioning_set_values(positive, {"frame_rate": frame_rate})
|
|
negative = node_helpers.conditioning_set_values(negative, {"frame_rate": frame_rate})
|
|
return (positive, negative)
|
|
|
|
|
|
class ModelSamplingLTXV:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}),
|
|
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}),
|
|
},
|
|
"optional": {"latent": ("LATENT",), }
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "advanced/model"
|
|
|
|
def patch(self, model, max_shift, base_shift, latent=None):
|
|
m = model.clone()
|
|
|
|
if latent is None:
|
|
tokens = 4096
|
|
else:
|
|
tokens = math.prod(latent["samples"].shape[2:])
|
|
|
|
x1 = 1024
|
|
x2 = 4096
|
|
mm = (max_shift - base_shift) / (x2 - x1)
|
|
b = base_shift - mm * x1
|
|
shift = (tokens) * mm + b
|
|
|
|
sampling_base = comfy.model_sampling.ModelSamplingFlux
|
|
sampling_type = comfy.model_sampling.CONST
|
|
|
|
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
|
pass
|
|
|
|
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
|
model_sampling.set_parameters(shift=shift)
|
|
m.add_object_patch("model_sampling", model_sampling)
|
|
|
|
return (m, )
|
|
|
|
|
|
class LTXVScheduler:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
|
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}),
|
|
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}),
|
|
"stretch": ("BOOLEAN", {
|
|
"default": True,
|
|
"tooltip": "Stretch the sigmas to be in the range [terminal, 1]."
|
|
}),
|
|
"terminal": (
|
|
"FLOAT",
|
|
{
|
|
"default": 0.1, "min": 0.0, "max": 0.99, "step": 0.01,
|
|
"tooltip": "The terminal value of the sigmas after stretching."
|
|
},
|
|
),
|
|
},
|
|
"optional": {"latent": ("LATENT",), }
|
|
}
|
|
|
|
RETURN_TYPES = ("SIGMAS",)
|
|
CATEGORY = "sampling/custom_sampling/schedulers"
|
|
|
|
FUNCTION = "get_sigmas"
|
|
|
|
def get_sigmas(self, steps, max_shift, base_shift, stretch, terminal, latent=None):
|
|
if latent is None:
|
|
tokens = 4096
|
|
else:
|
|
tokens = math.prod(latent["samples"].shape[2:])
|
|
|
|
sigmas = torch.linspace(1.0, 0.0, steps + 1)
|
|
|
|
x1 = 1024
|
|
x2 = 4096
|
|
mm = (max_shift - base_shift) / (x2 - x1)
|
|
b = base_shift - mm * x1
|
|
sigma_shift = (tokens) * mm + b
|
|
|
|
power = 1
|
|
sigmas = torch.where(
|
|
sigmas != 0,
|
|
math.exp(sigma_shift) / (math.exp(sigma_shift) + (1 / sigmas - 1) ** power),
|
|
0,
|
|
)
|
|
|
|
# Stretch sigmas so that its final value matches the given terminal value.
|
|
if stretch:
|
|
non_zero_mask = sigmas != 0
|
|
non_zero_sigmas = sigmas[non_zero_mask]
|
|
one_minus_z = 1.0 - non_zero_sigmas
|
|
scale_factor = one_minus_z[-1] / (1.0 - terminal)
|
|
stretched = 1.0 - (one_minus_z / scale_factor)
|
|
sigmas[non_zero_mask] = stretched
|
|
|
|
return (sigmas,)
|
|
|
|
def encode_single_frame(output_file, image_array: np.ndarray, crf):
|
|
container = av.open(output_file, "w", format="mp4")
|
|
try:
|
|
stream = container.add_stream(
|
|
"h264", rate=1, options={"crf": str(crf), "preset": "veryfast"}
|
|
)
|
|
stream.height = image_array.shape[0]
|
|
stream.width = image_array.shape[1]
|
|
av_frame = av.VideoFrame.from_ndarray(image_array, format="rgb24").reformat(
|
|
format="yuv420p"
|
|
)
|
|
container.mux(stream.encode(av_frame))
|
|
container.mux(stream.encode())
|
|
finally:
|
|
container.close()
|
|
|
|
|
|
def decode_single_frame(video_file):
|
|
container = av.open(video_file)
|
|
try:
|
|
stream = next(s for s in container.streams if s.type == "video")
|
|
frame = next(container.decode(stream))
|
|
finally:
|
|
container.close()
|
|
return frame.to_ndarray(format="rgb24")
|
|
|
|
|
|
def preprocess(image: torch.Tensor, crf=29):
|
|
if crf == 0:
|
|
return image
|
|
|
|
image_array = (image[:(image.shape[0] // 2) * 2, :(image.shape[1] // 2) * 2] * 255.0).byte().cpu().numpy()
|
|
with io.BytesIO() as output_file:
|
|
encode_single_frame(output_file, image_array, crf)
|
|
video_bytes = output_file.getvalue()
|
|
with io.BytesIO(video_bytes) as video_file:
|
|
image_array = decode_single_frame(video_file)
|
|
tensor = torch.tensor(image_array, dtype=image.dtype, device=image.device) / 255.0
|
|
return tensor
|
|
|
|
|
|
class LTXVPreprocess:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"img_compression": (
|
|
"INT",
|
|
{
|
|
"default": 35,
|
|
"min": 0,
|
|
"max": 100,
|
|
"tooltip": "Amount of compression to apply on image.",
|
|
},
|
|
),
|
|
}
|
|
}
|
|
|
|
FUNCTION = "preprocess"
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("output_image",)
|
|
CATEGORY = "image"
|
|
|
|
def preprocess(self, image, img_compression):
|
|
output_image = image
|
|
if img_compression > 0:
|
|
output_images = []
|
|
for i in range(image.shape[0]):
|
|
output_images.append(preprocess(image[i], img_compression))
|
|
return (torch.stack(output_images),)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"EmptyLTXVLatentVideo": EmptyLTXVLatentVideo,
|
|
"LTXVImgToVideo": LTXVImgToVideo,
|
|
"ModelSamplingLTXV": ModelSamplingLTXV,
|
|
"LTXVConditioning": LTXVConditioning,
|
|
"LTXVScheduler": LTXVScheduler,
|
|
"LTXVAddGuide": LTXVAddGuide,
|
|
"LTXVPreprocess": LTXVPreprocess,
|
|
"LTXVCropGuides": LTXVCropGuides,
|
|
}
|