ComfyUI/comfy/text_encoders/llama.py

227 lines
8.7 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Optional, Any
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.model_management
import comfy.ldm.common_dit
import comfy.model_management
@dataclass
class Llama2Config:
vocab_size: int = 128320
hidden_size: int = 4096
intermediate_size: int = 14336
num_hidden_layers: int = 32
num_attention_heads: int = 32
num_key_value_heads: int = 8
max_position_embeddings: int = 8192
rms_norm_eps: float = 1e-5
rope_theta: float = 500000.0
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, device=None, dtype=None):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
def forward(self, x: torch.Tensor):
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def precompute_freqs_cis(head_dim, seq_len, theta, device=None):
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
inv_freq = 1.0 / (theta ** (theta_numerator / head_dim))
position_ids = torch.arange(0, seq_len, device=device).unsqueeze(0)
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return (cos, sin)
def apply_rope(xq, xk, freqs_cis):
cos = freqs_cis[0].unsqueeze(1)
sin = freqs_cis[1].unsqueeze(1)
q_embed = (xq * cos) + (rotate_half(xq) * sin)
k_embed = (xk * cos) + (rotate_half(xk) * sin)
return q_embed, k_embed
class Attention(nn.Module):
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
super().__init__()
self.num_heads = config.num_attention_heads
self.num_kv_heads = config.num_key_value_heads
self.hidden_size = config.hidden_size
self.head_dim = self.hidden_size // self.num_heads
ops = ops or nn
self.q_proj = ops.Linear(config.hidden_size, config.hidden_size, bias=False, device=device, dtype=dtype)
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.o_proj = ops.Linear(config.hidden_size, config.hidden_size, bias=False, device=device, dtype=dtype)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
):
batch_size, seq_length, _ = hidden_states.shape
xq = self.q_proj(hidden_states)
xk = self.k_proj(hidden_states)
xv = self.v_proj(hidden_states)
xq = xq.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
xk = xk.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
xv = xv.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis)
xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
xv = xv.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
output = optimized_attention(xq, xk, xv, self.num_heads, mask=attention_mask, skip_reshape=True)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
super().__init__()
ops = ops or nn
self.gate_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype)
self.up_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype)
self.down_proj = ops.Linear(config.intermediate_size, config.hidden_size, bias=False, device=device, dtype=dtype)
def forward(self, x):
return self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
super().__init__()
self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops)
self.mlp = MLP(config, device=device, dtype=dtype, ops=ops)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
):
# Self Attention
residual = x
x = self.input_layernorm(x)
x = self.self_attn(
hidden_states=x,
attention_mask=attention_mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
)
x = residual + x
# MLP
residual = x
x = self.post_attention_layernorm(x)
x = self.mlp(x)
x = residual + x
return x
class Llama2_(nn.Module):
def __init__(self, config, device=None, dtype=None, ops=None):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.embed_tokens = ops.Embedding(
config.vocab_size,
config.hidden_size,
device=device,
dtype=dtype
)
self.layers = nn.ModuleList([
TransformerBlock(config, device=device, dtype=dtype, ops=ops)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
x = self.embed_tokens(x, out_dtype=dtype)
freqs_cis = precompute_freqs_cis(self.config.hidden_size // self.config.num_attention_heads,
x.shape[1],
self.config.rope_theta,
device=x.device)
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
if mask is not None:
mask += causal_mask
else:
mask = causal_mask
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
intermediate = None
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
for i, layer in enumerate(self.layers):
x = layer(
x=x,
attention_mask=mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
)
if i == intermediate_output:
intermediate = x.clone()
x = self.norm(x)
if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.norm(intermediate)
return x, intermediate
class Llama2(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Llama2Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, embeddings):
self.model.embed_tokens = embeddings
def forward(self, input_ids, *args, **kwargs):
return self.model(input_ids, *args, **kwargs)