mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 10:25:16 +00:00
5cbb01bc2f
To use: "Load CLIP" node with t5xxl + type mochi "Load Diffusion Model" node with the mochi dit file. "Load VAE" with the mochi vae file. EmptyMochiLatentVideo node for the latent. euler + linear_quadratic in the KSampler node.
165 lines
5.3 KiB
Python
165 lines
5.3 KiB
Python
#original code from https://github.com/genmoai/models under apache 2.0 license
|
|
#adapted to ComfyUI
|
|
|
|
import collections.abc
|
|
import math
|
|
from itertools import repeat
|
|
from typing import Callable, Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
import comfy.ldm.common_dit
|
|
|
|
|
|
# From PyTorch internals
|
|
def _ntuple(n):
|
|
def parse(x):
|
|
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
|
return tuple(x)
|
|
return tuple(repeat(x, n))
|
|
|
|
return parse
|
|
|
|
|
|
to_2tuple = _ntuple(2)
|
|
|
|
|
|
class TimestepEmbedder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
frequency_embedding_size: int = 256,
|
|
*,
|
|
bias: bool = True,
|
|
timestep_scale: Optional[float] = None,
|
|
dtype=None,
|
|
device=None,
|
|
operations=None,
|
|
):
|
|
super().__init__()
|
|
self.mlp = nn.Sequential(
|
|
operations.Linear(frequency_embedding_size, hidden_size, bias=bias, dtype=dtype, device=device),
|
|
nn.SiLU(),
|
|
operations.Linear(hidden_size, hidden_size, bias=bias, dtype=dtype, device=device),
|
|
)
|
|
self.frequency_embedding_size = frequency_embedding_size
|
|
self.timestep_scale = timestep_scale
|
|
|
|
@staticmethod
|
|
def timestep_embedding(t, dim, max_period=10000):
|
|
half = dim // 2
|
|
freqs = torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
|
|
freqs.mul_(-math.log(max_period) / half).exp_()
|
|
args = t[:, None].float() * freqs[None]
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
if dim % 2:
|
|
embedding = torch.cat(
|
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
|
)
|
|
return embedding
|
|
|
|
def forward(self, t, out_dtype):
|
|
if self.timestep_scale is not None:
|
|
t = t * self.timestep_scale
|
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype=out_dtype)
|
|
t_emb = self.mlp(t_freq)
|
|
return t_emb
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
hidden_size: int,
|
|
multiple_of: int,
|
|
ffn_dim_multiplier: Optional[float],
|
|
device: Optional[torch.device] = None,
|
|
dtype=None,
|
|
operations=None,
|
|
):
|
|
super().__init__()
|
|
# keep parameter count and computation constant compared to standard FFN
|
|
hidden_size = int(2 * hidden_size / 3)
|
|
# custom dim factor multiplier
|
|
if ffn_dim_multiplier is not None:
|
|
hidden_size = int(ffn_dim_multiplier * hidden_size)
|
|
hidden_size = multiple_of * ((hidden_size + multiple_of - 1) // multiple_of)
|
|
|
|
self.hidden_dim = hidden_size
|
|
self.w1 = operations.Linear(in_features, 2 * hidden_size, bias=False, device=device, dtype=dtype)
|
|
self.w2 = operations.Linear(hidden_size, in_features, bias=False, device=device, dtype=dtype)
|
|
|
|
def forward(self, x):
|
|
x, gate = self.w1(x).chunk(2, dim=-1)
|
|
x = self.w2(F.silu(x) * gate)
|
|
return x
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 16,
|
|
in_chans: int = 3,
|
|
embed_dim: int = 768,
|
|
norm_layer: Optional[Callable] = None,
|
|
flatten: bool = True,
|
|
bias: bool = True,
|
|
dynamic_img_pad: bool = False,
|
|
dtype=None,
|
|
device=None,
|
|
operations=None,
|
|
):
|
|
super().__init__()
|
|
self.patch_size = to_2tuple(patch_size)
|
|
self.flatten = flatten
|
|
self.dynamic_img_pad = dynamic_img_pad
|
|
|
|
self.proj = operations.Conv2d(
|
|
in_chans,
|
|
embed_dim,
|
|
kernel_size=patch_size,
|
|
stride=patch_size,
|
|
bias=bias,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
assert norm_layer is None
|
|
self.norm = (
|
|
norm_layer(embed_dim, device=device) if norm_layer else nn.Identity()
|
|
)
|
|
|
|
def forward(self, x):
|
|
B, _C, T, H, W = x.shape
|
|
if not self.dynamic_img_pad:
|
|
assert H % self.patch_size[0] == 0, f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
|
|
assert W % self.patch_size[1] == 0, f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
|
|
else:
|
|
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
|
|
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
|
|
x = F.pad(x, (0, pad_w, 0, pad_h))
|
|
|
|
x = rearrange(x, "B C T H W -> (B T) C H W", B=B, T=T)
|
|
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size, padding_mode='circular')
|
|
x = self.proj(x)
|
|
|
|
# Flatten temporal and spatial dimensions.
|
|
if not self.flatten:
|
|
raise NotImplementedError("Must flatten output.")
|
|
x = rearrange(x, "(B T) C H W -> B (T H W) C", B=B, T=T)
|
|
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
|
|
class RMSNorm(torch.nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype))
|
|
self.register_parameter("bias", None)
|
|
|
|
def forward(self, x):
|
|
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
|