mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 10:25:16 +00:00
121 lines
3.2 KiB
Python
121 lines
3.2 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Shared utilities for the networks module."""
|
|
|
|
from typing import Any
|
|
|
|
import torch
|
|
from einops import pack, rearrange, unpack
|
|
|
|
|
|
import comfy.ops
|
|
ops = comfy.ops.disable_weight_init
|
|
|
|
def time2batch(x: torch.Tensor) -> tuple[torch.Tensor, int]:
|
|
batch_size = x.shape[0]
|
|
return rearrange(x, "b c t h w -> (b t) c h w"), batch_size
|
|
|
|
|
|
def batch2time(x: torch.Tensor, batch_size: int) -> torch.Tensor:
|
|
return rearrange(x, "(b t) c h w -> b c t h w", b=batch_size)
|
|
|
|
|
|
def space2batch(x: torch.Tensor) -> tuple[torch.Tensor, int]:
|
|
batch_size, height = x.shape[0], x.shape[-2]
|
|
return rearrange(x, "b c t h w -> (b h w) c t"), batch_size, height
|
|
|
|
|
|
def batch2space(x: torch.Tensor, batch_size: int, height: int) -> torch.Tensor:
|
|
return rearrange(x, "(b h w) c t -> b c t h w", b=batch_size, h=height)
|
|
|
|
|
|
def cast_tuple(t: Any, length: int = 1) -> Any:
|
|
return t if isinstance(t, tuple) else ((t,) * length)
|
|
|
|
|
|
def replication_pad(x):
|
|
return torch.cat([x[:, :, :1, ...], x], dim=2)
|
|
|
|
|
|
def divisible_by(num: int, den: int) -> bool:
|
|
return (num % den) == 0
|
|
|
|
|
|
def is_odd(n: int) -> bool:
|
|
return not divisible_by(n, 2)
|
|
|
|
|
|
def nonlinearity(x):
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
def Normalize(in_channels, num_groups=32):
|
|
return ops.GroupNorm(
|
|
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
|
)
|
|
|
|
|
|
class CausalNormalize(torch.nn.Module):
|
|
def __init__(self, in_channels, num_groups=1):
|
|
super().__init__()
|
|
self.norm = ops.GroupNorm(
|
|
num_groups=num_groups,
|
|
num_channels=in_channels,
|
|
eps=1e-6,
|
|
affine=True,
|
|
)
|
|
self.num_groups = num_groups
|
|
|
|
def forward(self, x):
|
|
# if num_groups !=1, we apply a spatio-temporal groupnorm for backward compatibility purpose.
|
|
# All new models should use num_groups=1, otherwise causality is not guaranteed.
|
|
if self.num_groups == 1:
|
|
x, batch_size = time2batch(x)
|
|
return batch2time(self.norm(x), batch_size)
|
|
return self.norm(x)
|
|
|
|
|
|
def exists(v):
|
|
return v is not None
|
|
|
|
|
|
def default(*args):
|
|
for arg in args:
|
|
if exists(arg):
|
|
return arg
|
|
return None
|
|
|
|
|
|
def pack_one(t, pattern):
|
|
return pack([t], pattern)
|
|
|
|
|
|
def unpack_one(t, ps, pattern):
|
|
return unpack(t, ps, pattern)[0]
|
|
|
|
|
|
def round_ste(z: torch.Tensor) -> torch.Tensor:
|
|
"""Round with straight through gradients."""
|
|
zhat = z.round()
|
|
return z + (zhat - z).detach()
|
|
|
|
|
|
def log(t, eps=1e-5):
|
|
return t.clamp(min=eps).log()
|
|
|
|
|
|
def entropy(prob):
|
|
return (-prob * log(prob)).sum(dim=-1)
|