mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-04-13 15:03:33 +00:00
272 lines
11 KiB
Python
272 lines
11 KiB
Python
#Original code can be found on: https://github.com/black-forest-labs/flux
|
|
|
|
from dataclasses import dataclass
|
|
|
|
import torch
|
|
from torch import Tensor, nn
|
|
from einops import rearrange, repeat
|
|
import comfy.ldm.common_dit
|
|
|
|
from comfy.ldm.flux.layers import (
|
|
EmbedND,
|
|
timestep_embedding,
|
|
)
|
|
|
|
from .layers import (
|
|
DoubleStreamBlock,
|
|
LastLayer,
|
|
SingleStreamBlock,
|
|
Approximator,
|
|
ChromaModulationOut,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ChromaParams:
|
|
in_channels: int
|
|
out_channels: int
|
|
context_in_dim: int
|
|
hidden_size: int
|
|
mlp_ratio: float
|
|
num_heads: int
|
|
depth: int
|
|
depth_single_blocks: int
|
|
axes_dim: list
|
|
theta: int
|
|
patch_size: int
|
|
qkv_bias: bool
|
|
in_dim: int
|
|
out_dim: int
|
|
hidden_dim: int
|
|
n_layers: int
|
|
|
|
|
|
|
|
|
|
class Chroma(nn.Module):
|
|
"""
|
|
Transformer model for flow matching on sequences.
|
|
"""
|
|
|
|
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
|
super().__init__()
|
|
self.dtype = dtype
|
|
params = ChromaParams(**kwargs)
|
|
self.params = params
|
|
self.patch_size = params.patch_size
|
|
self.in_channels = params.in_channels
|
|
self.out_channels = params.out_channels
|
|
if params.hidden_size % params.num_heads != 0:
|
|
raise ValueError(
|
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
|
)
|
|
pe_dim = params.hidden_size // params.num_heads
|
|
if sum(params.axes_dim) != pe_dim:
|
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
|
self.hidden_size = params.hidden_size
|
|
self.num_heads = params.num_heads
|
|
self.in_dim = params.in_dim
|
|
self.out_dim = params.out_dim
|
|
self.hidden_dim = params.hidden_dim
|
|
self.n_layers = params.n_layers
|
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
|
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
|
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
|
# set as nn identity for now, will overwrite it later.
|
|
self.distilled_guidance_layer = Approximator(
|
|
in_dim=self.in_dim,
|
|
hidden_dim=self.hidden_dim,
|
|
out_dim=self.out_dim,
|
|
n_layers=self.n_layers,
|
|
dtype=dtype, device=device, operations=operations
|
|
)
|
|
|
|
|
|
self.double_blocks = nn.ModuleList(
|
|
[
|
|
DoubleStreamBlock(
|
|
self.hidden_size,
|
|
self.num_heads,
|
|
mlp_ratio=params.mlp_ratio,
|
|
qkv_bias=params.qkv_bias,
|
|
dtype=dtype, device=device, operations=operations
|
|
)
|
|
for _ in range(params.depth)
|
|
]
|
|
)
|
|
|
|
self.single_blocks = nn.ModuleList(
|
|
[
|
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
|
for _ in range(params.depth_single_blocks)
|
|
]
|
|
)
|
|
|
|
if final_layer:
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
|
|
|
self.skip_mmdit = []
|
|
self.skip_dit = []
|
|
self.lite = False
|
|
|
|
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
|
|
# This function slices up the modulations tensor which has the following layout:
|
|
# single : num_single_blocks * 3 elements
|
|
# double_img : num_double_blocks * 6 elements
|
|
# double_txt : num_double_blocks * 6 elements
|
|
# final : 2 elements
|
|
if block_type == "final":
|
|
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
|
|
single_block_count = self.params.depth_single_blocks
|
|
double_block_count = self.params.depth
|
|
offset = 3 * idx
|
|
if block_type == "single":
|
|
return ChromaModulationOut.from_offset(tensor, offset)
|
|
# Double block modulations are 6 elements so we double 3 * idx.
|
|
offset *= 2
|
|
if block_type in {"double_img", "double_txt"}:
|
|
# Advance past the single block modulations.
|
|
offset += 3 * single_block_count
|
|
if block_type == "double_txt":
|
|
# Advance past the double block img modulations.
|
|
offset += 6 * double_block_count
|
|
return (
|
|
ChromaModulationOut.from_offset(tensor, offset),
|
|
ChromaModulationOut.from_offset(tensor, offset + 3),
|
|
)
|
|
raise ValueError("Bad block_type")
|
|
|
|
|
|
def forward_orig(
|
|
self,
|
|
img: Tensor,
|
|
img_ids: Tensor,
|
|
txt: Tensor,
|
|
txt_ids: Tensor,
|
|
timesteps: Tensor,
|
|
guidance: Tensor = None,
|
|
control = None,
|
|
transformer_options={},
|
|
attn_mask: Tensor = None,
|
|
) -> Tensor:
|
|
patches_replace = transformer_options.get("patches_replace", {})
|
|
if img.ndim != 3 or txt.ndim != 3:
|
|
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
|
|
|
# running on sequences img
|
|
img = self.img_in(img)
|
|
|
|
# distilled vector guidance
|
|
mod_index_length = 344
|
|
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
|
|
# guidance = guidance *
|
|
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
|
|
|
|
# get all modulation index
|
|
modulation_index = timestep_embedding(torch.arange(mod_index_length), 32).to(img.device, img.dtype)
|
|
# we need to broadcast the modulation index here so each batch has all of the index
|
|
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
|
|
# and we need to broadcast timestep and guidance along too
|
|
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
|
|
# then and only then we could concatenate it together
|
|
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
|
|
|
|
mod_vectors = self.distilled_guidance_layer(input_vec)
|
|
|
|
txt = self.txt_in(txt)
|
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1)
|
|
pe = self.pe_embedder(ids)
|
|
|
|
blocks_replace = patches_replace.get("dit", {})
|
|
for i, block in enumerate(self.double_blocks):
|
|
if i not in self.skip_mmdit:
|
|
double_mod = (
|
|
self.get_modulations(mod_vectors, "double_img", idx=i),
|
|
self.get_modulations(mod_vectors, "double_txt", idx=i),
|
|
)
|
|
if ("double_block", i) in blocks_replace:
|
|
def block_wrap(args):
|
|
out = {}
|
|
out["img"], out["txt"] = block(img=args["img"],
|
|
txt=args["txt"],
|
|
vec=args["vec"],
|
|
pe=args["pe"],
|
|
attn_mask=args.get("attn_mask"))
|
|
return out
|
|
|
|
out = blocks_replace[("double_block", i)]({"img": img,
|
|
"txt": txt,
|
|
"vec": double_mod,
|
|
"pe": pe,
|
|
"attn_mask": attn_mask},
|
|
{"original_block": block_wrap})
|
|
txt = out["txt"]
|
|
img = out["img"]
|
|
else:
|
|
img, txt = block(img=img,
|
|
txt=txt,
|
|
vec=double_mod,
|
|
pe=pe,
|
|
attn_mask=attn_mask)
|
|
|
|
if control is not None: # Controlnet
|
|
control_i = control.get("input")
|
|
if i < len(control_i):
|
|
add = control_i[i]
|
|
if add is not None:
|
|
img += add
|
|
|
|
img = torch.cat((txt, img), 1)
|
|
|
|
for i, block in enumerate(self.single_blocks):
|
|
if i not in self.skip_dit:
|
|
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
|
|
if ("single_block", i) in blocks_replace:
|
|
def block_wrap(args):
|
|
out = {}
|
|
out["img"] = block(args["img"],
|
|
vec=args["vec"],
|
|
pe=args["pe"],
|
|
attn_mask=args.get("attn_mask"))
|
|
return out
|
|
|
|
out = blocks_replace[("single_block", i)]({"img": img,
|
|
"vec": single_mod,
|
|
"pe": pe,
|
|
"attn_mask": attn_mask},
|
|
{"original_block": block_wrap})
|
|
img = out["img"]
|
|
else:
|
|
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
|
|
|
|
if control is not None: # Controlnet
|
|
control_o = control.get("output")
|
|
if i < len(control_o):
|
|
add = control_o[i]
|
|
if add is not None:
|
|
img[:, txt.shape[1] :, ...] += add
|
|
|
|
img = img[:, txt.shape[1] :, ...]
|
|
final_mod = self.get_modulations(mod_vectors, "final")
|
|
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
|
|
return img
|
|
|
|
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
|
|
bs, c, h, w = x.shape
|
|
patch_size = 2
|
|
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
|
|
|
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
|
|
|
h_len = ((h + (patch_size // 2)) // patch_size)
|
|
w_len = ((w + (patch_size // 2)) // patch_size)
|
|
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
|
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
|
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
|
|
|
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
|
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
|
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|