ComfyUI/comfy_extras/nodes_custom_sampler.py
2023-09-28 00:30:45 -04:00

120 lines
4.3 KiB
Python

import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
import latent_preview
import torch
class BasicScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "_for_testing/custom_sampling"
FUNCTION = "get_sigmas"
def get_sigmas(self, model, scheduler, steps):
sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, steps).cpu()
return (sigmas, )
class KarrasScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
"rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "_for_testing/custom_sampling"
FUNCTION = "get_sigmas"
def get_sigmas(self, steps, sigma_max, sigma_min, rho):
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
return (sigmas, )
class KSamplerSelect:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"sampler_name": (comfy.samplers.SAMPLER_NAMES, ),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "_for_testing/custom_sampling"
FUNCTION = "get_sampler"
def get_sampler(self, sampler_name):
sampler = comfy.samplers.sampler_class(sampler_name)()
return (sampler, )
class SamplerCustom:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"add_noise": ("BOOLEAN", {"default": True}),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"sampler": ("SAMPLER", ),
"sigmas": ("SIGMAS", ),
"latent_image": ("LATENT", ),
}
}
RETURN_TYPES = ("LATENT","LATENT")
RETURN_NAMES = ("output", "denoised_output")
FUNCTION = "sample"
CATEGORY = "_for_testing/custom_sampling"
def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
latent = latent_image
latent_image = latent["samples"]
if not add_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
x0_output = {}
callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)
disable_pbar = False
samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)
out = latent.copy()
out["samples"] = samples
if "x0" in x0_output:
out_denoised = latent.copy()
out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
else:
out_denoised = out
return (out, out_denoised)
NODE_CLASS_MAPPINGS = {
"SamplerCustom": SamplerCustom,
"KarrasScheduler": KarrasScheduler,
"KSamplerSelect": KSamplerSelect,
"BasicScheduler": BasicScheduler,
}