mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
5cbb01bc2f
To use: "Load CLIP" node with t5xxl + type mochi "Load Diffusion Model" node with the mochi dit file. "Load VAE" with the mochi vae file. EmptyMochiLatentVideo node for the latent. euler + linear_quadratic in the KSampler node.
27 lines
1.0 KiB
Python
27 lines
1.0 KiB
Python
import nodes
|
|
import torch
|
|
import comfy.model_management
|
|
|
|
class EmptyMochiLatentVideo:
|
|
def __init__(self):
|
|
self.device = comfy.model_management.intermediate_device()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
|
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
|
"length": ("INT", {"default": 25, "min": 7, "max": nodes.MAX_RESOLUTION, "step": 6}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "generate"
|
|
|
|
CATEGORY = "latent/mochi"
|
|
|
|
def generate(self, width, height, length, batch_size=1):
|
|
latent = torch.zeros([batch_size, 12, ((length - 1) // 6) + 1, height // 8, width // 8], device=self.device)
|
|
return ({"samples":latent}, )
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"EmptyMochiLatentVideo": EmptyMochiLatentVideo,
|
|
}
|