ComfyUI/comfy/ldm/hydit/controlnet.py
来新璐 06eb9fb426
feat: add support for HunYuanDit ControlNet (#4245)
* add support for HunYuanDit ControlNet

* fix hunyuandit controlnet

* fix typo in hunyuandit controlnet

* fix typo in hunyuandit controlnet

* fix code format style

* add control_weight support for HunyuanDit Controlnet

* use control_weights in HunyuanDit Controlnet

* fix typo
2024-08-09 02:59:24 -04:00

349 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import Any, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import checkpoint
from comfy.ldm.modules.diffusionmodules.mmdit import (
Mlp,
TimestepEmbedder,
PatchEmbed,
RMSNorm,
)
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
from .poolers import AttentionPool
import comfy.latent_formats
from .models import HunYuanDiTBlock
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
def calc_rope(x, patch_size, head_size):
th = (x.shape[2] + (patch_size // 2)) // patch_size
tw = (x.shape[3] + (patch_size // 2)) // patch_size
base_size = 512 // 8 // patch_size
start, stop = get_fill_resize_and_crop((th, tw), base_size)
sub_args = [start, stop, (th, tw)]
# head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads']
rope = get_2d_rotary_pos_embed(head_size, *sub_args)
return rope
class HunYuanControlNet(nn.Module):
"""
HunYuanDiT: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.
Parameters
----------
args: argparse.Namespace
The arguments parsed by argparse.
input_size: tuple
The size of the input image.
patch_size: int
The size of the patch.
in_channels: int
The number of input channels.
hidden_size: int
The hidden size of the transformer backbone.
depth: int
The number of transformer blocks.
num_heads: int
The number of attention heads.
mlp_ratio: float
The ratio of the hidden size of the MLP in the transformer block.
log_fn: callable
The logging function.
"""
def __init__(
self,
input_size: tuple = 128,
patch_size: int = 2,
in_channels: int = 4,
hidden_size: int = 1408,
depth: int = 40,
num_heads: int = 16,
mlp_ratio: float = 4.3637,
text_states_dim=1024,
text_states_dim_t5=2048,
text_len=77,
text_len_t5=256,
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
size_cond=False,
use_style_cond=False,
learn_sigma=True,
norm="layer",
log_fn: callable = print,
attn_precision=None,
dtype=None,
device=None,
operations=None,
**kwargs,
):
super().__init__()
self.log_fn = log_fn
self.depth = depth
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.hidden_size = hidden_size
self.text_states_dim = text_states_dim
self.text_states_dim_t5 = text_states_dim_t5
self.text_len = text_len
self.text_len_t5 = text_len_t5
self.size_cond = size_cond
self.use_style_cond = use_style_cond
self.norm = norm
self.dtype = dtype
self.latent_format = comfy.latent_formats.SDXL
self.mlp_t5 = nn.Sequential(
nn.Linear(
self.text_states_dim_t5,
self.text_states_dim_t5 * 4,
bias=True,
dtype=dtype,
device=device,
),
nn.SiLU(),
nn.Linear(
self.text_states_dim_t5 * 4,
self.text_states_dim,
bias=True,
dtype=dtype,
device=device,
),
)
# learnable replace
self.text_embedding_padding = nn.Parameter(
torch.randn(
self.text_len + self.text_len_t5,
self.text_states_dim,
dtype=dtype,
device=device,
)
)
# Attention pooling
pooler_out_dim = 1024
self.pooler = AttentionPool(
self.text_len_t5,
self.text_states_dim_t5,
num_heads=8,
output_dim=pooler_out_dim,
dtype=dtype,
device=device,
operations=operations,
)
# Dimension of the extra input vectors
self.extra_in_dim = pooler_out_dim
if self.size_cond:
# Image size and crop size conditions
self.extra_in_dim += 6 * 256
if self.use_style_cond:
# Here we use a default learned embedder layer for future extension.
self.style_embedder = nn.Embedding(
1, hidden_size, dtype=dtype, device=device
)
self.extra_in_dim += hidden_size
# Text embedding for `add`
self.x_embedder = PatchEmbed(
input_size,
patch_size,
in_channels,
hidden_size,
dtype=dtype,
device=device,
operations=operations,
)
self.t_embedder = TimestepEmbedder(
hidden_size, dtype=dtype, device=device, operations=operations
)
self.extra_embedder = nn.Sequential(
operations.Linear(
self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device
),
nn.SiLU(),
operations.Linear(
hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device
),
)
# Image embedding
num_patches = self.x_embedder.num_patches
# HUnYuanDiT Blocks
self.blocks = nn.ModuleList(
[
HunYuanDiTBlock(
hidden_size=hidden_size,
c_emb_size=hidden_size,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
text_states_dim=self.text_states_dim,
qk_norm=qk_norm,
norm_type=self.norm,
skip=False,
attn_precision=attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
for _ in range(19)
]
)
# Input zero linear for the first block
self.before_proj = zero_module(
nn.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
)
# Output zero linear for the every block
self.after_proj_list = nn.ModuleList(
[
zero_module(
nn.Linear(
self.hidden_size, self.hidden_size, dtype=dtype, device=device
)
)
for _ in range(len(self.blocks))
]
)
def forward(
self,
x: torch.Tensor,
t: torch.Tensor = None,
condition=None,
encoder_hidden_states: Optional[torch.Tensor] = None,
text_embedding_mask=None,
encoder_hidden_states_t5=None,
text_embedding_mask_t5=None,
image_meta_size=None,
style=None,
control_weight=1.0,
transformer_options=None,
**kwarg,
):
"""
Forward pass of the encoder.
Parameters
----------
x: torch.Tensor
(B, D, H, W)
t: torch.Tensor
(B)
encoder_hidden_states: torch.Tensor
CLIP text embedding, (B, L_clip, D)
text_embedding_mask: torch.Tensor
CLIP text embedding mask, (B, L_clip)
encoder_hidden_states_t5: torch.Tensor
T5 text embedding, (B, L_t5, D)
text_embedding_mask_t5: torch.Tensor
T5 text embedding mask, (B, L_t5)
image_meta_size: torch.Tensor
(B, 6)
style: torch.Tensor
(B)
cos_cis_img: torch.Tensor
sin_cis_img: torch.Tensor
return_dict: bool
Whether to return a dictionary.
"""
if condition.shape[0] == 1:
condition = torch.repeat_interleave(condition, x.shape[0], dim=0)
text_states = encoder_hidden_states # 2,77,1024
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
text_states_mask = text_embedding_mask.bool() # 2,77
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
b_t5, l_t5, c_t5 = text_states_t5.shape
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)
text_states[:, -self.text_len :] = torch.where(
text_states_mask[:, -self.text_len :].unsqueeze(2),
text_states[:, -self.text_len :],
padding[: self.text_len],
)
text_states_t5[:, -self.text_len_t5 :] = torch.where(
text_states_t5_mask[:, -self.text_len_t5 :].unsqueeze(2),
text_states_t5[:, -self.text_len_t5 :],
padding[self.text_len :],
)
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,2051024
# _, _, oh, ow = x.shape
# th, tw = oh // self.patch_size, ow // self.patch_size
# Get image RoPE embedding according to `reso`lution.
freqs_cis_img = calc_rope(
x, self.patch_size, self.hidden_size // self.num_heads
) # (cos_cis_img, sin_cis_img)
# ========================= Build time and image embedding =========================
t = self.t_embedder(t, dtype=self.dtype)
x = self.x_embedder(x)
# ========================= Concatenate all extra vectors =========================
# Build text tokens with pooling
extra_vec = self.pooler(encoder_hidden_states_t5)
# Build image meta size tokens if applicable
# if image_meta_size is not None:
# image_meta_size = timestep_embedding(image_meta_size.view(-1), 256) # [B * 6, 256]
# if image_meta_size.dtype != self.dtype:
# image_meta_size = image_meta_size.half()
# image_meta_size = image_meta_size.view(-1, 6 * 256)
# extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
# Build style tokens
if style is not None:
style_embedding = self.style_embedder(style)
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
# Concatenate all extra vectors
c = t + self.extra_embedder(extra_vec) # [B, D]
# ========================= Deal with Condition =========================
condition = self.x_embedder(condition)
# ========================= Forward pass through HunYuanDiT blocks =========================
controls = []
x = x + self.before_proj(condition) # add condition
for layer, block in enumerate(self.blocks):
x = block(x, c, text_states, freqs_cis_img)
controls.append(self.after_proj_list[layer](x)) # zero linear for output
control_weights = [1.0 * (control_weight ** float(19 - i)) for i in range(19)]
assert len(control_weights) == len(
controls
), "control_weights and controls should have the same length"
controls = [
control * weight for control, weight in zip(controls, control_weights)
]
return {"output": controls}