ComfyUI/comfy/ops.py
comfyanonymous 0075c6d096 Mixed precision diffusion models with scaled fp8.
This change allows supports for diffusion models where all the linears are
scaled fp8 while the other weights are the original precision.
2024-10-21 18:12:51 -04:00

349 lines
13 KiB
Python

"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import comfy.model_management
from comfy.cli_args import args
import comfy.float
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None:
has_function = s.bias_function is not None
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
bias = s.bias_function(bias)
has_function = s.weight_function is not None
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
weight = s.weight_function(weight)
return weight, bias
class CastWeightBiasOp:
comfy_cast_weights = False
weight_function = None
bias_function = None
class disable_weight_init:
class Linear(torch.nn.Linear, CastWeightBiasOp):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Conv1d(torch.nn.Conv1d, CastWeightBiasOp):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Conv2d(torch.nn.Conv2d, CastWeightBiasOp):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Conv3d(torch.nn.Conv3d, CastWeightBiasOp):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
if self.weight is not None:
weight, bias = cast_bias_weight(self, input)
else:
weight = None
bias = None
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input, output_size=None):
num_spatial_dims = 2
output_padding = self._output_padding(
input, output_size, self.stride, self.padding, self.kernel_size,
num_spatial_dims, self.dilation)
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.conv_transpose2d(
input, weight, bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input, output_size=None):
num_spatial_dims = 1
output_padding = self._output_padding(
input, output_size, self.stride, self.padding, self.kernel_size,
num_spatial_dims, self.dilation)
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.conv_transpose1d(
input, weight, bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Embedding(torch.nn.Embedding, CastWeightBiasOp):
def reset_parameters(self):
self.bias = None
return None
def forward_comfy_cast_weights(self, input, out_dtype=None):
output_dtype = out_dtype
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
out_dtype = None
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
if "out_dtype" in kwargs:
kwargs.pop("out_dtype")
return super().forward(*args, **kwargs)
@classmethod
def conv_nd(s, dims, *args, **kwargs):
if dims == 2:
return s.Conv2d(*args, **kwargs)
elif dims == 3:
return s.Conv3d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
class manual_cast(disable_weight_init):
class Linear(disable_weight_init.Linear):
comfy_cast_weights = True
class Conv1d(disable_weight_init.Conv1d):
comfy_cast_weights = True
class Conv2d(disable_weight_init.Conv2d):
comfy_cast_weights = True
class Conv3d(disable_weight_init.Conv3d):
comfy_cast_weights = True
class GroupNorm(disable_weight_init.GroupNorm):
comfy_cast_weights = True
class LayerNorm(disable_weight_init.LayerNorm):
comfy_cast_weights = True
class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
comfy_cast_weights = True
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
comfy_cast_weights = True
class Embedding(disable_weight_init.Embedding):
comfy_cast_weights = True
def fp8_linear(self, input):
dtype = self.weight.dtype
if dtype not in [torch.float8_e4m3fn]:
return None
if len(input.shape) == 3:
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
w = w.t()
scale_weight = self.scale_weight
scale_input = self.scale_input
if scale_weight is None:
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
inn = input.reshape(-1, input.shape[2]).to(dtype)
else:
inn = (input * (1.0 / scale_input).to(input.dtype)).reshape(-1, input.shape[2]).to(dtype)
if bias is not None:
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
else:
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, scale_a=scale_input, scale_b=scale_weight)
if isinstance(o, tuple):
o = o[0]
return o.reshape((-1, input.shape[1], self.weight.shape[0]))
return None
class fp8_ops(manual_cast):
class Linear(manual_cast.Linear):
def reset_parameters(self):
self.scale_weight = None
self.scale_input = None
return None
def forward_comfy_cast_weights(self, input):
out = fp8_linear(self, input)
if out is not None:
return out
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
class scaled_fp8_op(manual_cast):
class Linear(manual_cast.Linear):
def __init__(self, *args, **kwargs):
if override_dtype is not None:
kwargs['dtype'] = override_dtype
super().__init__(*args, **kwargs)
def reset_parameters(self):
if not hasattr(self, 'scale_weight'):
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
if not scale_input:
self.scale_input = None
if not hasattr(self, 'scale_input'):
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
return None
def forward_comfy_cast_weights(self, input):
if fp8_matrix_mult:
out = fp8_linear(self, input)
if out is not None:
return out
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
def convert_weight(self, weight, inplace=False, **kwargs):
if inplace:
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
return weight
else:
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
if inplace_update:
self.weight.data.copy_(weight)
else:
self.weight = torch.nn.Parameter(weight, requires_grad=False)
return scaled_fp8_op
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)
if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8:
return fp8_ops
if compute_dtype is None or weight_dtype == compute_dtype:
return disable_weight_init
return manual_cast