# Based on: # https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license] # https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license] import torch import torch.nn as nn from .blocks import ( t2i_modulate, CaptionEmbedder, AttentionKVCompress, MultiHeadCrossAttention, T2IFinalLayer, SizeEmbedder, ) from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32): grid_h, grid_w = torch.meshgrid( torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation, torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation, indexing='ij' ) emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype) emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype) emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D) return emb class PixArtMSBlock(nn.Module): """ A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None, sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs): super().__init__() self.hidden_size = hidden_size self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.attn = AttentionKVCompress( hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio, qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs ) self.cross_attn = MultiHeadCrossAttention( hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs ) self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) # to be compatible with lower version pytorch approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp( in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, dtype=dtype, device=device, operations=operations ) self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5) def forward(self, x, y, t, mask=None, HW=None, **kwargs): B, N, C = x.shape shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1) x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW)) x = x + self.cross_attn(x, y, mask) x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) return x ### Core PixArt Model ### class PixArtMS(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, learn_sigma=True, pred_sigma=True, drop_path: float = 0., caption_channels=4096, pe_interpolation=None, pe_precision=None, config=None, model_max_length=120, micro_condition=True, qk_norm=False, kv_compress_config=None, dtype=None, device=None, operations=None, **kwargs, ): nn.Module.__init__(self) self.dtype = dtype self.pred_sigma = pred_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if pred_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.pe_interpolation = pe_interpolation self.pe_precision = pe_precision self.hidden_size = hidden_size self.depth = depth approx_gelu = lambda: nn.GELU(approximate="tanh") self.t_block = nn.Sequential( nn.SiLU(), operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device) ) self.x_embedder = PatchEmbed( patch_size=patch_size, in_chans=in_channels, embed_dim=hidden_size, bias=True, dtype=dtype, device=device, operations=operations ) self.t_embedder = TimestepEmbedder( hidden_size, dtype=dtype, device=device, operations=operations, ) self.y_embedder = CaptionEmbedder( in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=model_max_length, dtype=dtype, device=device, operations=operations, ) self.micro_conditioning = micro_condition if self.micro_conditioning: self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations) self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations) # For fixed sin-cos embedding: # num_patches = (input_size // patch_size) * (input_size // patch_size) # self.base_size = input_size // self.patch_size # self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size)) drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule if kv_compress_config is None: kv_compress_config = { 'sampling': None, 'scale_factor': 1, 'kv_compress_layer': [], } self.blocks = nn.ModuleList([ PixArtMSBlock( hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], sampling=kv_compress_config['sampling'], sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1, qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, ) for i in range(depth) ]) self.final_layer = T2IFinalLayer( hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations ) def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs): """ Original forward pass of PixArt. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) conditioning ar: (N, 1): aspect ratio cs: (N ,2) size conditioning for height/width """ B, C, H, W = x.shape c_res = (H + W) // 2 pe_interpolation = self.pe_interpolation if pe_interpolation is None or self.pe_precision is not None: # calculate pe_interpolation on-the-fly pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0) pos_embed = get_2d_sincos_pos_embed_torch( self.hidden_size, h=(H // self.patch_size), w=(W // self.patch_size), pe_interpolation=pe_interpolation, base_size=((round(c_res / 64) * 64) // self.patch_size), device=x.device, dtype=x.dtype, ).unsqueeze(0) x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(timestep, x.dtype) # (N, D) if self.micro_conditioning and (c_size is not None and c_ar is not None): bs = x.shape[0] c_size = self.csize_embedder(c_size, bs) # (N, D) c_ar = self.ar_embedder(c_ar, bs) # (N, D) t = t + torch.cat([c_size, c_ar], dim=1) t0 = self.t_block(t) y = self.y_embedder(y, self.training) # (N, D) if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = None y = y.squeeze(1).view(1, -1, x.shape[-1]) for block in self.blocks: x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D) x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x, H, W) # (N, out_channels, H, W) return x def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs): B, C, H, W = x.shape # Fallback for missing microconds if self.micro_conditioning: if c_size is None: c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1) if c_ar is None: c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1) ## Still accepts the input w/o that dim but returns garbage if len(context.shape) == 3: context = context.unsqueeze(1) ## run original forward pass out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar) ## only return EPS if self.pred_sigma: return out[:, :self.in_channels] return out def unpatchify(self, x, h, w): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] h = h // self.patch_size w = w // self.patch_size assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) return imgs